期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计 被引量:2
1
作者 屈克庆 董浩 +3 位作者 毛玲 赵晋斌 杨建林 李芬 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期263-272,共10页
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方... 锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过dQ/dV和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性. 展开更多
关键词 锂离子电池 健康因子 集成极限学习 健康状态在线估计
在线阅读 下载PDF
基于在线学习的离散时间人机协作系统预定性能柔顺控制
2
作者 刘霞 王露 陈勇 《电子科技大学学报》 北大核心 2025年第1期52-61,共10页
为了使人机协作系统中机器人能够准确地顺应人类行为,提出了一种基于在线学习的离散时间预定性能柔顺控制方法。该方法在外环采用在线顺序极限学习机算法估计人类行为,并将估计结果结合参考阻抗模型来重建参考轨迹。在内环建立了离散时... 为了使人机协作系统中机器人能够准确地顺应人类行为,提出了一种基于在线学习的离散时间预定性能柔顺控制方法。该方法在外环采用在线顺序极限学习机算法估计人类行为,并将估计结果结合参考阻抗模型来重建参考轨迹。在内环建立了离散时间预定性能控制器用于跟踪重建后的参考轨迹,并利用时间延迟估计来获得机器人复杂的未知动力学模型。分析了闭环系统的瞬态和稳态性能,通过对比仿真验证了该方法的有效性。所提的离散时间控制方法可更好地满足数字计算机的工作原理,在减少计算和内存负担的基础上,使得机器人末端执行器的跟踪误差能够满足预设性能要求。此外,该方法无需机器人精确的数学模型,同时还能减轻人类操作机器人的力量负担,保证人机协作的柔顺性。 展开更多
关键词 柔顺控制 离散时间人协作系统 人类行为估计 在线顺序极限学习 预定性能
在线阅读 下载PDF
基于粒子群优化在线顺序极限学习机动态环境室内定位算法 被引量:2
3
作者 韩承毅 苏胜君 +2 位作者 施伟斌 乐燕芬 李瑞祥 《数据采集与处理》 CSCD 北大核心 2022年第6期1345-1352,共8页
动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online s... 动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online sequential extreme learning machine,PSO⁃OS⁃ELM)。该算法继承了在线顺序极限学习机(Online sequential extreme learning machine,OS⁃ELM)算法的数据采集成本低、适应环境变化快、收敛速度较快且定位精度较高等特性,同时又利用粒子群优化(Particle swarm optimization,PSO)解决OS⁃ELM算法中奇异值问题和鲁棒性问题。在3种不同环境下采集数据,将PSO⁃OS⁃ELM算法、OS⁃ELM算法和WKNN算法进行实验对比。实验结果表明:在动态变化的室内环境中,PSO⁃OS⁃ELM算法定位误差较小且鲁棒性增强,优于其他算法;平均定位误差相较于其他算法减少了约15%;算法耗时性相较于传统定位算法加权K近邻算法(Weighted K⁃nearest neighbor,WKNN)算法减少了约55%。 展开更多
关键词 粒子群优化 在线顺序极限学习 接收信号强度 动态环境 室内定位
在线阅读 下载PDF
基于在线自适应极限学习机选择性集成的网络入侵检测 被引量:4
4
作者 何捷舟 刘金平 +3 位作者 张五霞 肖文辉 唐朝晖 徐鹏飞 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第7期544-554,共11页
随着互联网的普及和网络连接设备与访问方式的多样化,网络入侵方式与手段日趋多样化且变异速度快,传统入侵检测方法在有效性、自适应性和实时性方面难以应对日益复杂网络环境的安全监控要求,为此提出一种基于在线自适应极限学习机(onlin... 随着互联网的普及和网络连接设备与访问方式的多样化,网络入侵方式与手段日趋多样化且变异速度快,传统入侵检测方法在有效性、自适应性和实时性方面难以应对日益复杂网络环境的安全监控要求,为此提出一种基于在线自适应极限学习机(online adaption extreme learning machine, OAELM)选择性学习的网络入侵检测方法(SEoOAELM-NID).首先,提出一种能自动设定最优隐含节点个数且具有在线增量学习功能的OAELM构建方法,采用Bagging策略快速训练出多个具有一定独立性的OAELM子学习器;然后,基于边缘距离最小化原则(margin distance minimization,MDM)对OAELM子学习器的集成增益进行计算;通过选择增益度高的部分OAELM进行选择性集成,获得泛化能力强、效率高的选择性集成学习器用于入侵检测.由于SEoOAELM-NID能自动设定ELM子学习器最优隐节点个数且能根据网络环境变化实现检测模型在线顺序更新,因而能有效适应各种复杂网络环境的入侵检测要求;选择部分最优的子学习器进行集成,保证了最终检测结果的准确性和实效性,同时利用在线数据不断更新检测器.在NSL-KDD数据集上的测试结果表明,相比基于单个学习器以及传统集成学习的网络入侵检测方法,SEoOAELM-NID无论对已知入侵类型还是未知入侵类型均能获得更高的检测率,且识别速度快. 展开更多
关键词 网络入侵检测 集成学习 在线自适应极限学习
在线阅读 下载PDF
基于自适应在线极限学习机模型的预测方法 被引量:8
5
作者 徐勇 王东 张慧 《统计研究》 CSSCI 北大核心 2016年第7期103-109,共7页
本文针对单个在线极限学习机输出不稳定的情况,提出一种自适应集成在线极限学习机算法(ASEOSELM)。算法首先初始化多个在线极限学习机模型,然后根据到达的每一批次数据的训练误差及其方差自适应地调整各个在线极限学习机的集成权重,并... 本文针对单个在线极限学习机输出不稳定的情况,提出一种自适应集成在线极限学习机算法(ASEOSELM)。算法首先初始化多个在线极限学习机模型,然后根据到达的每一批次数据的训练误差及其方差自适应地调整各个在线极限学习机的集成权重,并动态删除那些小于设定阈值的模型以提高算法的训练速度,最后选择准确度高、泛化能力好的模型用于集成预测。通过函数拟合、UCI数据集以及真实股价预测实验表明,文中提出的ASE-OSELM算法相比传统的OSELM、LS-SVM和BPNN算法具有更高的预测准确度和抗干扰能力。 展开更多
关键词 人工神经网络 自适应集成 选择性集成 在线极限学习
在线阅读 下载PDF
基于准确性和多样性的在线动态选择集成建模方法 被引量:3
6
作者 陈双叶 赵荣 +1 位作者 符寒光 高建琛 《北京工业大学学报》 CAS CSCD 北大核心 2021年第11期1211-1218,共8页
为了解决复杂工业过程中的概念漂移问题,提高集成学习模型的泛化性能,在保证集成学习模型精度的基础上,提出了一种用于优化多样性的基学习器在线动态选择集成建模方法.该方法以在线极限学习机作为基学习器,按照基学习器在滑动窗口上的... 为了解决复杂工业过程中的概念漂移问题,提高集成学习模型的泛化性能,在保证集成学习模型精度的基础上,提出了一种用于优化多样性的基学习器在线动态选择集成建模方法.该方法以在线极限学习机作为基学习器,按照基学习器在滑动窗口上的分类精度对其进行逆序排序,将基学习器在滑动窗口上的其他性能指标作为特征属性,依次利用近似线性依靠条件挑选出准确且多样的基学习器用于集成输出,提高了集成学习模型在处理概念漂移数据流时的分类精度.最后,使用合成数据集和公开数据集验证了所提算法的合理性与有效性. 展开更多
关键词 概念漂移 集成学习 近似线性依靠 在线极限学习 准确性 多样性
在线阅读 下载PDF
改进极限学习机在FBG的光纤光栅传感器标定中的应用
7
作者 夏翔 朱利锋 +3 位作者 葛青青 黄镠 叶张冲 孙永斌 《电测与仪表》 2025年第9期218-224,共7页
针对实际应用中光纤光栅传感器服役时间长和工作环境恶劣等原因导致的标定曲线缓慢漂移问题,提出了一种改进在线顺序极限学习机用于光纤光栅传感系统的动态标定。在初始训练阶段引入正则化避免产生奇异矩阵,提高泛化能力。在线学习阶段... 针对实际应用中光纤光栅传感器服役时间长和工作环境恶劣等原因导致的标定曲线缓慢漂移问题,提出了一种改进在线顺序极限学习机用于光纤光栅传感系统的动态标定。在初始训练阶段引入正则化避免产生奇异矩阵,提高泛化能力。在线学习阶段引入自适应遗忘因子对新旧样本比重进行调整,提高预测精度。通过试验进行对比分析,验证了该方法的优越性。结果表明,与传统标定方法相比,所提方法的均方根误差(root mean square error,RMSE)指标始终最低,R^(2)指标始终最高,具有较高的精度和较好的泛化性能,解决了标定曲线缓慢漂移问题,满足光纤光栅传感器的要求,可以应用于实际工程。 展开更多
关键词 光纤光栅 动态标定 传感系统 在线顺序极限学习 正则化 自适应遗忘因子
在线阅读 下载PDF
基于集成OS-ELM的暂态稳定评估方法 被引量:17
8
作者 李扬 李国庆 +2 位作者 顾雪平 张艳军 韩子娇 《电工技术学报》 EI CSCD 北大核心 2015年第14期412-418,共7页
针对现有基于模式识别的暂态评估方法无法在线学习的不足,本文研究了一种基于集成在线序贯极限学习机(OS-ELM)的暂态稳定评估方法。首先,使用基于增量式学习的OS-ELM作为弱分类器,然后采用在线Boosting算法进行集成进一步提高评估模型... 针对现有基于模式识别的暂态评估方法无法在线学习的不足,本文研究了一种基于集成在线序贯极限学习机(OS-ELM)的暂态稳定评估方法。首先,使用基于增量式学习的OS-ELM作为弱分类器,然后采用在线Boosting算法进行集成进一步提高评估模型的稳定性和泛化能力,实现评估模型的在线更新。基于新英格兰39节点系统的算例结果验证了所提方法的有效性。 展开更多
关键词 暂态稳定评估 极限学习 在线学习 集成学习 广域测量系统
在线阅读 下载PDF
基于EOS-ELM的高频地波雷达有效波高反演 被引量:2
9
作者 张晓愉 楚晓亮 王曙曜 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第S1期163-169,共7页
高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限... 高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限学习机(EOS-ELM)的方法,利用高频地波雷达数据,综合考虑一阶谱和二阶谱的特征信息来进行有效波高的反演。学习机能够有效选择一阶谱和二阶谱信息,使结果达到最优化,从而提高有效波高的反演精度。针对低海况的数据,本文通过分析确定波高分类阈值,将数据分段进行波高反演,进一步提高了波高反演的精度。 展开更多
关键词 高频地波雷达 有效波高反演 集成在线顺序极限学习(eos-elm)
在线阅读 下载PDF
基于改进OS-ELM的煤矿微震事件在线识别方法 被引量:2
10
作者 丁琳琳 张明 +3 位作者 刘媛媛 张翰林 郝亚丽 潘一山 《煤炭科学技术》 CAS CSCD 北大核心 2020年第S02期233-239,共7页
煤矿微震事件是在采矿过程中发生的一种诱发地震,其中大能量的微震事件会引发冲击地压事故,是煤矿井下开采的危害之一。针对煤矿微震信号识别,现有微震事件识别方法仍然存在识别精度低、时延明显问题。为此,提出一种基于改进OS-ELM的煤... 煤矿微震事件是在采矿过程中发生的一种诱发地震,其中大能量的微震事件会引发冲击地压事故,是煤矿井下开采的危害之一。针对煤矿微震信号识别,现有微震事件识别方法仍然存在识别精度低、时延明显问题。为此,提出一种基于改进OS-ELM的煤矿微震事件在线识别方法,首先利用极值连接降维对原始微震数据进行预处理,将预处理之后的微震数据作为OS-ELM模型的输入,将OSELM训练得到的输出权值,作为下一次的更新信息,建立OS-ELM分类器模型,然后增加滑动窗口机制,实现对海量微震信号的在线分批训练和预测,从训练和预测方面提高速度和精度。试验结果表明,改进后的OS-ELM算法与OS-ELM和ELM分类算法相比,不仅能保持较好的训练和识别精度,同时大幅提高了运算速度。 展开更多
关键词 微震事件 预处理 在线顺序极限学习 滑动窗口
在线阅读 下载PDF
基于博弈论准确性和差异性兼优的选择性集成建模方法及其应用 被引量:4
11
作者 陈双叶 高建琛 +1 位作者 符寒光 赵荣 《北京工业大学学报》 EI CAS CSCD 北大核心 2021年第1期32-39,共8页
集成学习相较于单模型具有更好的预测精度和泛化能力,被广泛应用于工业过程的质量预测.基学习器之间的多样性和基学习器的准确性对集成的泛化能力影响极大.为了进一步提高集成模型的泛化能力,提出一种同时考虑准确性和差异性的选择性集... 集成学习相较于单模型具有更好的预测精度和泛化能力,被广泛应用于工业过程的质量预测.基学习器之间的多样性和基学习器的准确性对集成的泛化能力影响极大.为了进一步提高集成模型的泛化能力,提出一种同时考虑准确性和差异性的选择性集成建模方法.以在线极限学习机作为基学习器,将基学习器的准确性和基学习器对集成模型多样性的贡献率作为博弈双方,利用博弈论原理求解得出使集成模型准确性和多样性都达到最优的选择方案,使集成模型的准确性和多样性兼优;模型预测完成后,综合当前误差和历史记录误差对基学习器的权重进行在线更新,实现在线测量阶段对建模对象特性的动态自适应.最后,使用公开数据集和实际工业数据验证了所提算法的合理性和有效性. 展开更多
关键词 软测量模型 选择性集成 概念漂移 博弈论 在线极限学习 自适应学习
在线阅读 下载PDF
基于CPA-OSELM的热轧带钢厚度在线预测
12
作者 肖思竹 张飞 +2 位作者 黄学忠 肖雄 易忠荣 《科学技术与工程》 北大核心 2022年第22期9686-9694,共9页
为解决自动厚度控制(automatic gauge control, AGC)系统反馈滞后、耦合强、厚度偏差大等问题,提出了一种基于食肉植物算法(carnivorous plant algorithm, CPA)的在线顺序极限学习机(online sequential extreme learning machine, OSELM... 为解决自动厚度控制(automatic gauge control, AGC)系统反馈滞后、耦合强、厚度偏差大等问题,提出了一种基于食肉植物算法(carnivorous plant algorithm, CPA)的在线顺序极限学习机(online sequential extreme learning machine, OSELM)预测算法。首先,基于从现场采集的相关数据,建立了OSELM在线厚度预测模型。然后为了提高模型的准确性及稳定性,采用CPA方法优化OSELM的权重和偏置。在此基础上,运用自学习方法进一步提高模型的预测精度。最后,通过实验验证基于CPA-OSELM预测模型的有效性。实验结果表明:基于CPA-OSELM的方法能够对不同规格带钢的出口厚度进行高精度在线预测,预测结果可用于提升AGC模型的控制精度,为提升带钢产品质量奠定基础。 展开更多
关键词 热轧带钢 在线预测 在线顺序极限学习(online sequential extreme learning machine OSELM) 食肉植物算法(carnivorous plant algorithm CPA) 学习
在线阅读 下载PDF
基于分组遗传算法的集成多样性增强及其应用
13
作者 陈双叶 赵荣 符寒光 《北京工业大学学报》 CAS CSCD 北大核心 2021年第8期886-894,共9页
为了解决复杂工业过程的概念漂移问题,提高集成学习模型的泛化性能,基于分组遗传算法,提出一种用于提升基学习器间多样性的建模方法.该方法以在线极限学习机作为基学习器,根据基学习器在滑动窗口上的性能对其进行分组,并执行进化操作,... 为了解决复杂工业过程的概念漂移问题,提高集成学习模型的泛化性能,基于分组遗传算法,提出一种用于提升基学习器间多样性的建模方法.该方法以在线极限学习机作为基学习器,根据基学习器在滑动窗口上的性能对其进行分组,并执行进化操作,同时引入基因流概念,增加了基学习器间的多样性,提高了集成算法在处理概念漂移数据流时的预测性能.最后使用合成数据集和真实数据集验证了所提算法的合理性与有效性. 展开更多
关键词 分组遗传算法 基因流 集成学习 在线极限学习 准确性 多样性
在线阅读 下载PDF
不均衡小样本下多特征优化选择的生命体触电故障识别方法 被引量:5
14
作者 高伟 饶俊民 +1 位作者 全圣鑫 郭谋发 《电工技术学报》 EI CSCD 北大核心 2024年第7期2060-2071,共12页
针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时... 针对现有的剩余电流保护装置无法有效识别触电事故的问题,该文提出了一种不均衡小样本下多特征优化选择的生命体触电故障识别方法。首先通过变分自编码器(VAE)对实验收集到的生命体触电小样本数据进行增殖以实现正负样本均衡;然后在时域上提取能够反映波形动态变化特性的23个特征量,并利用高斯核Fisher判别分析(GKFDA)与最大信息系数(MIC)法从中选择最优表达特征组;最后,提出基于遗忘因子的在线顺序极限学习机(FOS-ELM)算法实现生命体触电行为的鉴别。实验结果表明,所提方法利用不均衡小样本触电数据集就可以训练出一个优秀的分类模型,诊断准确率可达98.75%,诊断时间仅为1.33 ms。其优良的性能结合在线增量式学习分类器设计,使得模型具备新知识学习能力,具有极好的工程应用前景。 展开更多
关键词 剩余电流保护装置 生命体触电故障 多特征优化选择 基于遗忘因子的在线顺序 极限学习(FOS-ELM) 不均衡小样本
在线阅读 下载PDF
基于R-OSELM的海洋环境数据在线预测
15
作者 李志刚 刘宇杰 +3 位作者 韩国峰 程尚 付多民 李莹琦 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第1期104-110,共7页
为及时辨识海洋环境的变化趋势和降低长期累积的海洋环境数据对预测模型的影响,提出一种基于循环在线顺序极限学习机(Recurrent Online Sequential Extreme Learning Machine R-OSELM)的海洋环境数据在线预测模型.采用完全在线的方法初... 为及时辨识海洋环境的变化趋势和降低长期累积的海洋环境数据对预测模型的影响,提出一种基于循环在线顺序极限学习机(Recurrent Online Sequential Extreme Learning Machine R-OSELM)的海洋环境数据在线预测模型.采用完全在线的方法初始化海洋环境数据训练集,通过在线顺序极限学习机算法对已有的海洋环境数据进行逐块输入,利用极限学习机的自动编码技术与一种归一化方法对输入权重循环处理,实现预测模型的在线更新,最后完成对海洋环境数据的在线预测.使用该模型对溶解氧、叶绿素a、浊度、蓝绿藻进行预测,结果表明R-OSELM模型的预测精度高于对比模型,确定其具备海洋环境数据在线预测能力,可为海洋水域水体富营养化与海洋环境污染预警提供参考. 展开更多
关键词 海洋环境数据 时间序列预测 在线预测 在线顺序极限学习 循环神经网络
在线阅读 下载PDF
基于放电电压平台研究的蓄电池寿命状态评估 被引量:2
16
作者 成庶 吕壮壮 +1 位作者 刘畅 向超群 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期1266-1274,共9页
为解决传统动车组镍镉蓄电池的返修方法导致部分蓄电池在触发返修条件前已性能劣化,同时大量已达返修标准的蓄电池性能并未过度衰退的问题,设计单体镍镉蓄电池全寿命加速老化实验并获取相关实验数据。首先,采用集成经验模态方法建立单... 为解决传统动车组镍镉蓄电池的返修方法导致部分蓄电池在触发返修条件前已性能劣化,同时大量已达返修标准的蓄电池性能并未过度衰退的问题,设计单体镍镉蓄电池全寿命加速老化实验并获取相关实验数据。首先,采用集成经验模态方法建立单体电池全寿命健康状态类别划分模型,然后运用离散小波变换消除放电电压平台数据的奇异值,进而利用极限学习机算法预测蓄电池寿命状态,最终实现对蓄电池全生命周期寿命的准确预测与健康状态评估功能。实验结果表明:相较于传统的蓄电池寿命阈值分类方法,运用集成经验模态建立的健康状态类别划分模型能有效避免蓄电池寿命末端出现误警情况。作为融合算法模型输入的放电电压平台数据易获取,基于离散小波变换的数据预处理方法可提升算法准确率近3%,最终可达到96%~98%。此外,相对于传统的神经网络模型,融合算法模型不涉及迭代,因而能兼顾算法的预测精度与计算效能。蓄电池识别健康状态的F1值为0.976 3,识别老化阶段的F1值为0.950 9,识别故障阶段的F1值为0.939 394。相较于传统的依据动车组运营里程和使用年限进而决定蓄电池是否返修的方法,融合算法模型提供了显著的评判标准,能判别蓄电池是否应该返修,并有效地识别蓄电池的健康状态,降低了动车组的运营成本,保障动车组运营安全,为电池寿命评判和检修策略的优化提供参考。 展开更多
关键词 寿命评估 集成经验模态分解 离散小波变换 极限学习 放电电压平台 在线检测
在线阅读 下载PDF
煤矿井下动态环境基于WiFi的OSELM算法研究
17
作者 窦占树 崔丽珍 +1 位作者 洪金祥 赫佳星 《传感器与微系统》 CSCD 北大核心 2023年第7期48-51,56,共5页
针对煤矿井下环境高动态变化,导致WiFi指纹匹配定位模型精度降低的问题,提出在线顺序极限学习机(OSELM)的井下定位算法,利用新增接收信号强度指示(RSSI)数据实现对模型的在线实时更新,同时赋予新增数据时效性权重来改进OSELM算法,在保... 针对煤矿井下环境高动态变化,导致WiFi指纹匹配定位模型精度降低的问题,提出在线顺序极限学习机(OSELM)的井下定位算法,利用新增接收信号强度指示(RSSI)数据实现对模型的在线实时更新,同时赋予新增数据时效性权重来改进OSELM算法,在保证定位精度的前提下减少数据采集和模型训练工作量。实验结果表明:与传统的批量学习方法相比,利用OSELM在线学习能力可以改善由于井下环境高动态变化导致定位模型精度降低的问题,并且改进的OSELM算法能更有效提升模型定位精度。 展开更多
关键词 位置指纹定位 在线顺序极限学习定位模型 高动态井下环境 在线增量学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部