期刊文献+
共找到508篇文章
< 1 2 26 >
每页显示 20 50 100
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
1
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
基于集成经验模态分解算法的舰船噪声特征提取研究
2
作者 陈志强 曹建芳 彭存赫 《舰船科学技术》 北大核心 2025年第3期172-175,共4页
为解决模态混叠问题,提取更为全面的舰船噪声特征,设计了基于集成经验模态分解算法的舰船噪声特征提取方法。利用非线性局部投影滤波方法处理舰船信号,利用集成经验模态分解算法分解滤波后的噪声信号,提取具有关键噪声特征的固有模态函... 为解决模态混叠问题,提取更为全面的舰船噪声特征,设计了基于集成经验模态分解算法的舰船噪声特征提取方法。利用非线性局部投影滤波方法处理舰船信号,利用集成经验模态分解算法分解滤波后的噪声信号,提取具有关键噪声特征的固有模态函数(IMF)分量;利用相关系数法计算各IMF分量和信号间的相关系数,保留相关系数大于设置门限阈值的IMF分量,根据排列熵提取全面的舰船噪声特征。实验证明,该方法可有效分解噪声信号,得到相关系数最高的IMF分量,获得理想舰船噪声特征。 展开更多
关键词 舰船噪声 特征提取 局部投影 经验模态分解 排列熵
在线阅读 下载PDF
基于经验模态分解的加权呼吸波形重构算法
3
作者 郭林林 姚敏 +2 位作者 张文清 张佳 孙建德 《图学学报》 北大核心 2025年第4期847-854,共8页
基于Wi-Fi信号的呼吸速率估计技术凭借其非接触式的优势吸引了学术界和工业界的广泛关注。然而,如何提取高质量呼吸波形确保呼吸速率估计的精度是一直困扰研究人员的难题。提出了一种基于经验模态分解(EMD)的加权呼吸波形重构算法(WEMD)... 基于Wi-Fi信号的呼吸速率估计技术凭借其非接触式的优势吸引了学术界和工业界的广泛关注。然而,如何提取高质量呼吸波形确保呼吸速率估计的精度是一直困扰研究人员的难题。提出了一种基于经验模态分解(EMD)的加权呼吸波形重构算法(WEMD),旨在提高不同环境下个体呼吸速率估计的精准度和鲁棒性。首先,利用呼吸信噪比(BNR)和I/O分解及投影方法,筛选出周期性较好的子载波并生成多条呼吸波形。其次,通过主成分分析(PCA)技术校准呼吸波形、经验模态分解方法分解和估计不同频率分量与原始呼吸模式的相关性。最后,通过设计的自适应加权算法对不同呼吸波形进行重构融合实现高精准的个体呼吸速率估计。实验结果表明,WEMD算法在4个室内环境下获得平均94%以上的人体呼吸速率估计精准度。该方法不仅有效地解决低质量Wi-Fi数据对呼吸速率估计精度的影响,而且也能够精准估计不均匀呼吸的速率,实现在不同环境下高精度地监测人体呼吸,以保证估计误差在10%以内。 展开更多
关键词 无线感知 信道状态信息 经验模态分解 呼吸波形重构 呼吸速率估计
在线阅读 下载PDF
一种添加部分自适应噪声的集成经验模态分解方法 被引量:1
4
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型 被引量:1
5
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
6
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
深海环境下利用噪声抵消器和经验模态分解的拖船干扰抑制方法 被引量:1
7
作者 周健 宋雪晶 +1 位作者 刘福臣 张伟 《兵工学报》 EI CAS CSCD 北大核心 2024年第2期443-453,共11页
针对深海环境下拖船自噪声在靠近端射和非端射方向产生的多途角扩展干扰影响拖曳声纳探测性能的问题,提出一种利用归一化最小均方误差(Normalized Least Mean Square,NLMS)噪声抵消器和经验模态分解(Empirical Mode Decomposition,EMD)... 针对深海环境下拖船自噪声在靠近端射和非端射方向产生的多途角扩展干扰影响拖曳声纳探测性能的问题,提出一种利用归一化最小均方误差(Normalized Least Mean Square,NLMS)噪声抵消器和经验模态分解(Empirical Mode Decomposition,EMD)的拖船干扰抑制方法。通过借鉴逆波束形成(Inverse Beamforming,IBF)的思想,对靠近端射方向的干扰波束进行相位补偿,重构出时域干扰信号,并将其作为自适应噪声抵消器的输入信号,基阵接收信号作为期望信号,利用NLMS方法调整滤波器的权值,进行初步干扰抑制。在此基础上通过EMD对噪声抵消器的输出结果进行分解得到多个本征模态(Intrinsic Mode Function,IMF)和残余分量,再利用匹配滤波方法筛选出用于重构拖船噪声的IMF,并在阵元域抵消完成干扰抑制,其中匹配模版为靠近端射方向频域干扰波束逆傅里叶变换得到的时域干扰信号。仿真数据和海试数据分析结果表明,与其他方法相比,所提方法能够大幅度抑制拖船自噪声产生的多途角扩展干扰,提升拖曳声纳在干扰盲区内对弱目标信号的检测能力。 展开更多
关键词 拖船噪声 噪声抵消器 经验模态分解 检测能力 干扰抑制
在线阅读 下载PDF
集成经验模态分解中加入白噪声的自适应准则 被引量:25
8
作者 蔡艳平 李艾华 +2 位作者 徐斌 许平 何艳萍 《振动.测试与诊断》 EI CSCD 北大核心 2011年第6期709-714,811,共6页
现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decompo... 现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decomposition,简称AEEMD)算法,并给出了一种在EEMD方法中有效加入白噪声的可依据准则。首先,计算出输入信号的幅值标准差;然后,采用高通滤波方法对输入信号进行分解,通过计算高通滤波分解后的高频分量幅值标准差和输入信号幅值标准差来确定加入白噪声的幅值标准差,在此基础之上,EEMD集成次数根据期望的信号分解相对误差和加入白噪声的幅值标准差惟一确定;最后,为了进一步提高相邻模态函数的正交性,对AEEMD分解结果进行二次处理。仿真试验验证了AEEMD方法的抗混分解能力,将AEEMD方法应用于转子油膜涡动的故障监测诊断中,提取出转子油膜涡动的故障特征,并与基本EMD算法进行了对比,结果表明,AEEMD更加精确地提取了油膜涡动信号的故障特征。 展开更多
关键词 旋转机械 故障诊断 集成经验模态分解 模态混叠
在线阅读 下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
9
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
10
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于经验模态分解的船舶辐射噪声特征提取研究 被引量:3
11
作者 崔建忠 姜淼 《舰船科学技术》 北大核心 2024年第18期150-153,共4页
船舶辐射噪声中的线谱分量具有较高的强度和稳定度,通过测定并跟踪线谱,可以精确地估计目标的运动参数。为此,研究基于经验模态分解的船舶辐射噪声特征提取方法。首先,构建船舶辐射噪声数学模型,用于获取船舶辐射噪声信号;然后,运用经... 船舶辐射噪声中的线谱分量具有较高的强度和稳定度,通过测定并跟踪线谱,可以精确地估计目标的运动参数。为此,研究基于经验模态分解的船舶辐射噪声特征提取方法。首先,构建船舶辐射噪声数学模型,用于获取船舶辐射噪声信号;然后,运用经验模态分解方法提取船舶辐射噪声的7个经验模态分量和1个余项,并计算船舶辐射噪声经验模态分量的样本熵;最后,选择样本熵最大的船舶辐射噪声检验模态分量作为船舶辐射噪声的特征。实验结果表明,该方法可以准确获得船舶运行设备的辐射噪声,且具备较强的舰船辐射噪声分帧能力。该方法还可以有效地将舰船辐射噪声分解成不同经验模态分量,大大降低了船舶辐射噪声余项接近零。 展开更多
关键词 经验模态分解 船舶辐射噪声 特征提取 样本熵
在线阅读 下载PDF
基于经验模态分解谱峭度重构峰值定位的电机噪声溯源方法 被引量:1
12
作者 冯爽 许琦 +1 位作者 罗园庆 陈长征 《汽车技术》 CSCD 北大核心 2023年第12期35-39,共5页
针对无刷直流电机噪声溯源问题,提出了一种基于经验模态分解谱峭度重构峰值定位(EMD-KR-FP)的电机噪声溯源方法。首先经理论计算得到径向电磁力、转矩脉动和共振引起的电磁噪声的特征频率,定义特征频率集,并采用经验模态分解(EMD)方法... 针对无刷直流电机噪声溯源问题,提出了一种基于经验模态分解谱峭度重构峰值定位(EMD-KR-FP)的电机噪声溯源方法。首先经理论计算得到径向电磁力、转矩脉动和共振引起的电磁噪声的特征频率,定义特征频率集,并采用经验模态分解(EMD)方法对电机噪声时域信号进行分解;然后根据谱峭度理论筛选本征模态函数(IMF)分量进行信号重构,对重构信号进行傅里叶变换,使用峰值定位算法对频谱上贡献最大的几个峰值进行峰值频率提取并与特征频率集的频率进行对照,确定引起电机电磁噪声的原因。试验结果表明,该方法有效,与传统阶次分析法相比,工作量显著降低。 展开更多
关键词 无刷直流电机 经验模态分解谱峭度重构 噪声溯源
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
13
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
基于经验模态分解和固有模态函数重构的局部放电去噪方法 被引量:27
14
作者 贾嵘 徐其惠 +2 位作者 田录林 李辉 刘伟 《电工技术学报》 EI CSCD 北大核心 2008年第1期13-18,共6页
为了提取局部放电信号的特征,提出一种基于经验模态分解(EMD)和固有模态函数(IMF)重构算法的局部放电噪声抑制方法。首先对含有噪声的局部放电信号进行经验模态分解,得到含特征频率的固有模态函数,然后对所得的固有模态函数分量进行自... 为了提取局部放电信号的特征,提出一种基于经验模态分解(EMD)和固有模态函数(IMF)重构算法的局部放电噪声抑制方法。首先对含有噪声的局部放电信号进行经验模态分解,得到含特征频率的固有模态函数,然后对所得的固有模态函数分量进行自适应阈值处理后重构,从而抑制噪声干扰。相比于常规的小波去噪算法,该方法具有自适应性强,不受小波函数和最佳小波分解层数选取的限制等优点,而且实现了阈值和固有模态函数阈值处理层数的自动选取。分别以仿真信号和实际信号为例,证明了该方法的有效性。 展开更多
关键词 局部放电 经验模态分解 固有模态函数 重构 自适应阈值算法
在线阅读 下载PDF
完全互补小波噪声辅助集总经验模态分解 被引量:19
15
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 集合经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
在线阅读 下载PDF
基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法 被引量:205
16
作者 胡爱军 马万里 唐贵基 《中国电机工程学报》 EI CSCD 北大核心 2012年第11期106-111,153,共6页
为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)与峭度准则的包络解调方法。该方法首先利用EEMD将振动信号分解,然后利用峭度最大准则选取EEMD分解后的本征模函数(intrinsic ... 为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)与峭度准则的包络解调方法。该方法首先利用EEMD将振动信号分解,然后利用峭度最大准则选取EEMD分解后的本征模函数(intrinsic mode function,IMF),将该本征模函数进行包络解调从而获得滚动轴承的故障特征信息。该方法可以有效抑制经验模态分解(empirical mode decomposition,EMD)中的模态混叠问题,同时还避免了共振解调方法中中心频率及滤波频带的选取,具有良好的自适应性。利用该包络解调方法对实际滚动轴承发生内圈、外圈故障进行了分析,证明了该方法可以有效地提取滚动轴承故障特征信息,能够实现滚动轴承故障的精确诊断。 展开更多
关键词 集成经验模态分解 峭度 滚动轴承 包络解调 故障诊断
在线阅读 下载PDF
基于经验模态分解和独立成分分析的柴油机噪声源识别技术 被引量:17
17
作者 张俊红 李林洁 +2 位作者 刘海 王健 王凯楠 《内燃机学报》 EI CAS CSCD 北大核心 2012年第6期544-549,共6页
为有效地控制整机噪声能量和提高整机噪声品质,采用经验模态分解(EMD)和独立成分分析(ICA)技术,通过将EMD分解后的本征模函数作为ICA方法中的多个虚拟通道,解决了对单一采样信号进行盲源识别的欠定问题.将该思路应用于柴油机辐射噪声的... 为有效地控制整机噪声能量和提高整机噪声品质,采用经验模态分解(EMD)和独立成分分析(ICA)技术,通过将EMD分解后的本征模函数作为ICA方法中的多个虚拟通道,解决了对单一采样信号进行盲源识别的欠定问题.将该思路应用于柴油机辐射噪声的主要噪声声源的识别研究,同时利用相干分析与时频分析技术实现柴油机噪声声源的准确识别.结果表明,EMD-ICA联合的噪声声源分离识别技术,可用来识别柴油机燃烧噪声、机械噪声声源,有效地克服了EMD技术在噪声声源识别中的模态混叠问题,降低了ICA技术对单一采样信号进行准确识别的难度. 展开更多
关键词 柴油机 经验模态分解 独立成分分析 噪声源识别
在线阅读 下载PDF
基于噪声辅助多元经验模态分解和多尺度形态学的滚动轴承故障诊断方法 被引量:17
18
作者 武哲 杨绍普 +2 位作者 任彬 马新娜 张建超 《振动与冲击》 EI CSCD 北大核心 2016年第4期127-133,共7页
为了从强噪背景中提取滚动轴承微弱故障特征,提出一种基于噪声辅助多元经验模态分解(Noise Assisted Multivariate Empirical Mode Decomposition,NAMEMD)和数学形态学的滚动轴承故障诊断方法。NAMEMD是新提出的一种基于噪声辅助数据分... 为了从强噪背景中提取滚动轴承微弱故障特征,提出一种基于噪声辅助多元经验模态分解(Noise Assisted Multivariate Empirical Mode Decomposition,NAMEMD)和数学形态学的滚动轴承故障诊断方法。NAMEMD是新提出的一种基于噪声辅助数据分析方法,其克服了集成经验模态分解的模态混淆和运算量大等问题。将NAMEMD与多尺度形态学相结合应用于滚动轴承故障诊断。该方法首先利用NAMEMD将多分量调频调幅故障信号自适应分解为一系列IMF分量;其次,选取能量高的IMF分量求和重构;最后利用多尺度形态学差值滤波器提取信号的故障特征频率。为了验证理论的正确性,进行了仿真试验和轴承故障试验,并与EEMD和包络解调进行了比较,结果表明该方法在进一步降低模态混叠效应的同时,明显提高了运算速度,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的故障特征频率。 展开更多
关键词 噪声辅助多元经验模态分解 模态混叠 多尺度形态学 滚动轴承 故障诊断
在线阅读 下载PDF
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:45
19
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
在线阅读 下载PDF
利用窄带噪声辅助多元经验模态分解算法检测换流变压器用有载分接开关机械状态 被引量:32
20
作者 段若晨 王丰华 +1 位作者 周荔丹 姚钢 《电工技术学报》 EI CSCD 北大核心 2017年第10期182-189,共8页
为有效检测换流变压器用有载分接开关的机械状态,提出一种窄带噪声辅助多元经验模态分解的方法对有载分接开关切换过程中采集到的多通道振动信号进行分析。具体应用时,在原始多通道振动信号中增加若干通道窄带噪声信号,并在统一高维超... 为有效检测换流变压器用有载分接开关的机械状态,提出一种窄带噪声辅助多元经验模态分解的方法对有载分接开关切换过程中采集到的多通道振动信号进行分析。具体应用时,在原始多通道振动信号中增加若干通道窄带噪声信号,并在统一高维超球面坐标系下进行分解计算,从而在有效抑制经验模态分解过程中模态混叠现象的同时,极大提高了多维振动信号分解的准确性并降低了运算复杂性。进而根据区间最大功率特征计算固有模态函数的功率矩阵,对有载分接开关的机械特征进行描述。对有载分接开关样机正常与典型机械故障时振动信号的计算结果表明,其不同工况下的功率特征有较大区别,所定义的矩阵相似度指标可较好地衡量有载分接开关典型故障时的振动差异程度。此外,触头松动时与正常工况的相似度指标低于绝缘板松动故障,说明触头松动故障对有载分接开关切换过程的影响更为明显。 展开更多
关键词 换流变压器 有载分接开关 多元经验模态分解 窄带噪声 功率矩阵相似度
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部