期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融入集成卷积和注意力的民航业务实体识别 被引量:2
1
作者 邢志伟 戴铮 罗谦 《计算机工程与设计》 北大核心 2022年第2期443-449,共7页
通过识别机场的业务实体能够帮助管理者在网络舆情中快速定位服务中的痛点问题。旅客评价中存在较多的复杂实体并伴随有数据类别失衡的现象,针对此提出融入集成卷积(E-CNN)和注意力机制(Attention)的实体识别方法。主要利用人工标注和... 通过识别机场的业务实体能够帮助管理者在网络舆情中快速定位服务中的痛点问题。旅客评价中存在较多的复杂实体并伴随有数据类别失衡的现象,针对此提出融入集成卷积(E-CNN)和注意力机制(Attention)的实体识别方法。主要利用人工标注和半监督思想结合的方法获取旅客评价的数据集,通过ECNN获取多范围的文本特征信息,由双向长短期记忆网络(BLSTM)获取文本的长依赖特征,使用Attention机制克服数据类别不平衡的缺点。实验结果表明,提出的方法能有效识别民航业务实体,F1值超过其它所对比的模型。 展开更多
关键词 命名实体 集成卷积网络 注意力机制 长短期记忆网络 条件随机场
在线阅读 下载PDF
基于深度学习的糖尿病足伤口TEXAS分期研究
2
作者 陈瑜倩 吕东辉 +1 位作者 宋安平 谢传涛 《应用科学学报》 CAS CSCD 北大核心 2024年第3期437-446,共10页
针对糖尿病足辅助诊断问题,提出了一种有效的具有两级集成卷积神经网络的深度学习方法。利用加载预训练权重的121层密集卷积网络DenseNet121和EfficientNet-B0网络作为集成卷积神经网络训练时特征提取的初始参数;再使用数据集Diabetic F... 针对糖尿病足辅助诊断问题,提出了一种有效的具有两级集成卷积神经网络的深度学习方法。利用加载预训练权重的121层密集卷积网络DenseNet121和EfficientNet-B0网络作为集成卷积神经网络训练时特征提取的初始参数;再使用数据集Diabetic Foot UlcersGrand Challenge 2021进行整个网络的训练,从而实现糖尿病足伤口感染和缺血特征的TEXAS自动分期。使用5折交叉验证获得的该方法受试者工作特征曲线下面积值为0.989,准确率为0.954,查全率为0.944,查准率为0.954,F1-score为0.956。结果显示该方法性能良好,在临床辅助诊断中具有较好的应用潜力。 展开更多
关键词 TEXAS分期 集成卷积神经网络 迁移学习 糖尿病足 计算机辅助诊断
在线阅读 下载PDF
基于E-CNN和BLSTM-CRF的临床文本命名实体识别 被引量:18
3
作者 曹春萍 关鹏举 《计算机应用研究》 CSCD 北大核心 2019年第12期3748-3751,共4页
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)... 在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)结合的模型,通过对CNN中的卷积层设定不同卷积窗口的大小,来捕获多个词语之间更丰富的边界特征信息。然后将集成的特征信息传递给BLSTM模型进行训练,最后由CRF模型得到最终的序列标注。实验结果表明,该方法针对临床病历文本中的复合实体识别具有良好的效果。 展开更多
关键词 命名实体识别 临床文本 集成卷积神经网络
在线阅读 下载PDF
联合矢量数据和深度学习的遥感影像对象级分类样本自动选择方法 被引量:1
4
作者 何燕兰 王胜利 +1 位作者 朱寿红 刘文杰 《遥感信息》 CSCD 北大核心 2023年第6期15-21,共7页
针对目前的样本获取手段过于依赖人工制作,难以满足当前业务化实际需求的问题,提出了一种基于历史矢量数据和双线性差异化集成卷积神经网络支持的对象级样本自动选择方法。该方法首先通过对影像多尺度分割获取同质性较高的地物块状图斑... 针对目前的样本获取手段过于依赖人工制作,难以满足当前业务化实际需求的问题,提出了一种基于历史矢量数据和双线性差异化集成卷积神经网络支持的对象级样本自动选择方法。该方法首先通过对影像多尺度分割获取同质性较高的地物块状图斑,将历史矢量携带的标签信息赋值给该块状图斑;然后,通过图斑边界约束自适应生成多尺度样本集;最后,利用双线性差异化集成卷积神经网络进行样本的选择和纯化,通过属性关联实现对象级的高质量样本获取。无人机影像的分类结果表明,该方法充分结合了历史矢量数据先验几何约束和属性信息,顾及了最新影像中地物的光谱特性、边界特征和纹理信息,并引入深度学习方法实现了多尺度样本的纯化处理,实现了快速获取满足实际需求的高可靠性对象级分类样本。 展开更多
关键词 矢量数据 双线性差异化集成卷积神经网络 多尺度样本集 面向对象 样本自动选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部