考虑将特征选择集成到支持向量机分类器中,提出集成特征选择的最优化支持向量机分类器——FS-SDPSVM(Feature Selection in Semi-definite Program for Support Vector Machine)。该模型将每个特征分别在核空间中做特征映射,然后通过参...考虑将特征选择集成到支持向量机分类器中,提出集成特征选择的最优化支持向量机分类器——FS-SDPSVM(Feature Selection in Semi-definite Program for Support Vector Machine)。该模型将每个特征分别在核空间中做特征映射,然后通过参数组合构成新的核矩阵,将特征选择过程与机器分类过程统一在一个优化目标下,同时达到特征选择与分类最优。在特征筛选方面,根据模型参数提出用于特征筛选的特征支持度和特征贡献度,通过控制二者的上下限可以在最优分类和最少特征之间灵活取舍。实证中分别将最优分类(FS-SDP-SVM1)和最少特征(FS-SDPSVM2)两类集成化特征选择算法与Relief-F、SFS、SBS算法在UCI机器学习数据和人造数据中进行对比实验。结果表明,提出的FS-SDP-SVM算法在保持较好泛化能力的基础上,在多数实验数据集中实现了最大分类准确率或最少特征数量;在人工数据中,该方法可以准确地选出真正的特征,去除噪声特征。展开更多
Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a nove...Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.展开更多
文摘考虑将特征选择集成到支持向量机分类器中,提出集成特征选择的最优化支持向量机分类器——FS-SDPSVM(Feature Selection in Semi-definite Program for Support Vector Machine)。该模型将每个特征分别在核空间中做特征映射,然后通过参数组合构成新的核矩阵,将特征选择过程与机器分类过程统一在一个优化目标下,同时达到特征选择与分类最优。在特征筛选方面,根据模型参数提出用于特征筛选的特征支持度和特征贡献度,通过控制二者的上下限可以在最优分类和最少特征之间灵活取舍。实证中分别将最优分类(FS-SDP-SVM1)和最少特征(FS-SDPSVM2)两类集成化特征选择算法与Relief-F、SFS、SBS算法在UCI机器学习数据和人造数据中进行对比实验。结果表明,提出的FS-SDP-SVM算法在保持较好泛化能力的基础上,在多数实验数据集中实现了最大分类准确率或最少特征数量;在人工数据中,该方法可以准确地选出真正的特征,去除噪声特征。
基金Project (61203021) supported by the National Natural Science Foundation of ChinaProject (2011216011) supported by the Key Science and Technology Program of Liaoning Province,China+1 种基金Project (2013020024) supported by the Natural Science Foundation of Liaoning Province,ChinaProject (LJQ2015061) supported by the Program for Liaoning Excellent Talents in Universities,China
文摘Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.