期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
数据同化系统中的集合时间局地化鲁棒滤波方法 被引量:1
1
作者 摆玉龙 张转花 马明芳 《国防科技大学学报》 EI CAS CSCD 北大核心 2018年第1期114-120,共7页
针对传统的卡尔曼滤波方法对不确定因素不具备鲁棒性问题,在集合鲁棒滤波的基础上,提出一种从观测角度构建优化数据同化的方法,称之为放大观测协方差矩阵的集合时间局地化鲁棒滤波,并推导了新方法的算法准则和递归公式。利用非线性系统L... 针对传统的卡尔曼滤波方法对不确定因素不具备鲁棒性问题,在集合鲁棒滤波的基础上,提出一种从观测角度构建优化数据同化的方法,称之为放大观测协方差矩阵的集合时间局地化鲁棒滤波,并推导了新方法的算法准则和递归公式。利用非线性系统Lorenz-96模型,基于性能水平系数、驱动参数、观测数目和集合数目变化的条件,对新方法和集合卡尔曼滤波方法的鲁棒性和同化精度进行比较。结果表明:集合卡尔曼滤波方法的均方根误差大于时间局地化鲁棒滤波的;在观测数或集合数较少的情况下,集合卡尔曼滤波出现了滤波发散问题,而鲁棒滤波的均方根误差波动较小;相较于传统的集合卡尔曼滤波算法,观测角度构建的时间局地化的H_∞滤波方法对系统参数的变化更具鲁棒性,滤波精度更高。 展开更多
关键词 数据同化 集合鲁棒滤波 观测协方差 Lorenz-96模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部