期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
基于互补自适应噪声的集合经验模式分解算法 被引量:17
1
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
基于集合经验模式分解和遗传-高斯过程回归的短期风速概率预测 被引量:36
2
作者 甘迪 柯德平 +1 位作者 孙元章 崔明建 《电工技术学报》 EI CSCD 北大核心 2015年第11期138-147,共10页
短期风速概率预测对实现大规模风电并网具有重要意义。当前风速预测方法大多为点预测,无法描述风能的随机性。提出了一种基于集合经验模式分解(EEMD)和遗传-高斯过程回归(GAGPR)的组合概率预测方法,首先对筛选和归一化后的风速时间序列... 短期风速概率预测对实现大规模风电并网具有重要意义。当前风速预测方法大多为点预测,无法描述风能的随机性。提出了一种基于集合经验模式分解(EEMD)和遗传-高斯过程回归(GAGPR)的组合概率预测方法,首先对筛选和归一化后的风速时间序列进行集合经验模式分解,然后对各分量分别建立高斯过程回归模型,并引入遗传算法代替共轭梯度法,改进协方差函数的超参数寻优过程。最后叠加子序列预测结果得到风速概率预测结果,并与分位点回归法进行比较。仿真结果表明,该方法能够有效提高概率预测准确度,并为类似工程提供借鉴。 展开更多
关键词 集合经验模式分解 高斯过程回归 遗传算法 风速 概率预测
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
3
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
集合经验模式分解在旋转机械故障诊断中的应用 被引量:30
4
作者 窦东阳 赵英凯 《农业工程学报》 EI CAS CSCD 北大核心 2010年第2期190-196,共7页
为了抑制经验模式分解中的模式混淆现象,提高分析精度,引入集合经验模式分解(EEMD)算法。在分析信号上叠加适当的随机高斯白噪声序列,改变信号的局部时间跨度,从而改变一次经验模式分解(EMD)中分析的特征尺度,通过足够多次EMD分解,相当... 为了抑制经验模式分解中的模式混淆现象,提高分析精度,引入集合经验模式分解(EEMD)算法。在分析信号上叠加适当的随机高斯白噪声序列,改变信号的局部时间跨度,从而改变一次经验模式分解(EMD)中分析的特征尺度,通过足够多次EMD分解,相当于从多个角度提取信号的本质,最后由所有次分解得出的各本征模态函数(IMF)的均值作为输出,不但消除了人为噪声的影响,还清晰还原了信号的内在过程,准确揭示了其真实物理意义。通过仿真试验和实际的动静碰磨故障案例证实了EEMD算法的有效性,并与基本EMD算法和高频谐波法进行了对比,结果表明,EEMD虽然耗时较多但结果更准确,在旋转机械故障诊断领域应用前景广泛。 展开更多
关键词 旋转机械 故障诊断 集合经验模式分解 模式混淆 动静碰磨
在线阅读 下载PDF
集合经验模式分解在柴油机机械故障诊断中的应用 被引量:10
5
作者 张玲玲 骆诗定 +2 位作者 肖云魁 赵懿冠 廖红云 《科学技术与工程》 2010年第27期6745-6749,共5页
针对柴油机表面振动信号非平稳、非线性等特点,引入集合经验模式分解(EEMD)的信号分析方法,对原始振动信号叠加适当的随机高斯白噪声,从而改变信号的局部时间跨度,有效抑制了经验模式分解(EMD)的模式混叠现象。通过Hilbert变换作边际谱... 针对柴油机表面振动信号非平稳、非线性等特点,引入集合经验模式分解(EEMD)的信号分析方法,对原始振动信号叠加适当的随机高斯白噪声,从而改变信号的局部时间跨度,有效抑制了经验模式分解(EMD)的模式混叠现象。通过Hilbert变换作边际谱曲线以提取故障特征信息。仿真试验和发动机故障实例证实了EEMD算法可以提高振动信号的分析精度,在柴油机机械故障诊断领域应用前景广泛。 展开更多
关键词 柴油机 机械故障诊断 集合经验模式分解 经验模式分解 边际谱曲线
在线阅读 下载PDF
基于集合经验模式分解和公共空间模式的脑电信号特征提取 被引量:4
6
作者 张学军 霍延 +1 位作者 黄丽亚 成谢锋 《科学技术与工程》 北大核心 2020年第1期109-117,共9页
公共空间模式(common spatial pattern,CSP)能够较好地提取运动想象任务时脑电信号的判别特性,但是其性能与大脑进行想象任务的频带相关。为了确定这样一组频带实现精确的分类,基于集合经验模式分解、FIR滤波器组以及公共空间模式算法... 公共空间模式(common spatial pattern,CSP)能够较好地提取运动想象任务时脑电信号的判别特性,但是其性能与大脑进行想象任务的频带相关。为了确定这样一组频带实现精确的分类,基于集合经验模式分解、FIR滤波器组以及公共空间模式算法提出了一种脑电特征提取方法。预处理去除伪迹后的信号首先经过集合经验模式算法获得多个模函数,然后选择出包含μ节律和β节律范围的分量实现信号重构,重构后的脑电信号作为带通滤波器组的输入得到若干子带信号集合,从每个子带信号中提取CSP特征,最后将提取的特征经过支持向量机(support vector machine,SVM)进行分类。运用该方法对脑-计算机接口(brain-computer interface,BCI)竞赛数据集进行分类,实验表明该方法能够自适应地提取、筛选和判别每个受试者的空间CSP特征,分类准确率达96.53%。 展开更多
关键词 集合经验模式分解 公共空间模式分解 FIR滤波器组 支持向量机
在线阅读 下载PDF
基于集合经验模式分解的火灾时间序列预测 被引量:4
7
作者 张烨 田雯 刘盛鹏 《计算机工程》 CAS CSCD 2012年第24期152-155,共4页
采用集合经验模式分解(EEMD)和多变量相空间重构技术,结合非线性支持向量回归(SVR)模型,提出一种火灾次数时间序列组合预测方法。根据EEMD将非平稳的火灾时间序列分解为一系列不同尺度的固有模态分量,利用多变量相空间重构技术对分解的... 采用集合经验模式分解(EEMD)和多变量相空间重构技术,结合非线性支持向量回归(SVR)模型,提出一种火灾次数时间序列组合预测方法。根据EEMD将非平稳的火灾时间序列分解为一系列不同尺度的固有模态分量,利用多变量相空间重构技术对分解的各个分量进行相空间重构,构建其训练数据,对重构的训练数据建立各分量的非线性支持向量回归预测模型,使用SVR集成预测方法对火灾时间序列进行预测。仿真结果表明,与单变量相空间重构方法以及SVR方法相比,该方法具有较高的预测精度。 展开更多
关键词 火灾时间序列 集合经验模式分解 相空间重构 支持向量回归 非平稳
在线阅读 下载PDF
基于集合经验模式分解的ARIMA行业售电量预测模型 被引量:21
8
作者 林女贵 《电力科学与技术学报》 CAS 北大核心 2019年第2期128-133,共6页
售电量的准确预测是电力市场课题研究的重要内容之一,目前已有许多模型用于售电量预测。在此背景下,考虑售电量时间序列的非线性、波动性和周期性,提出基于集合经验模式分解和自回归积分滑动算法的预测模型。该模型首先对售电量时间序... 售电量的准确预测是电力市场课题研究的重要内容之一,目前已有许多模型用于售电量预测。在此背景下,考虑售电量时间序列的非线性、波动性和周期性,提出基于集合经验模式分解和自回归积分滑动算法的预测模型。该模型首先对售电量时间序列进行集合经验模态分解,通过添加白噪声得到不同时间尺度分布的售电量时间序列,分解后得到一系列相对平稳的本征模态函数和趋势项,然后利用自回归积分滑动算法对各平稳化本征模态函数和趋势项分别进行预测,得到各分量的预测结果,最后将分量预测结果叠加得到最终的售电量预测值。基于历史统计售电量数据的预测结果分析表明,基于集合经验模式分解的 ARIMA模型具有良好的预测精度。 展开更多
关键词 售电量预测 集合经验模式分解 自回归积分滑动平均模型
在线阅读 下载PDF
集合经验模式分解和小波变换方法的复合与应用 被引量:13
9
作者 代军 叶幸玮 《统计与决策》 CSSCI 北大核心 2021年第13期155-158,共4页
文章提出将集合经验模式分解和小波变换进行复合,以对单一降噪方法进行改进,并给出了该模型在金融数据降噪中的实际算例。结果显示:复合降噪模型能够克服单一模型中存在的模态混叠以及基函数固定等问题;在金融市场中利用该复合方法,可... 文章提出将集合经验模式分解和小波变换进行复合,以对单一降噪方法进行改进,并给出了该模型在金融数据降噪中的实际算例。结果显示:复合降噪模型能够克服单一模型中存在的模态混叠以及基函数固定等问题;在金融市场中利用该复合方法,可以得到动态相依性更为准确的估计,为金融时间序列分析和预测提供了新的方法。 展开更多
关键词 集合经验模式分解 小波降噪 复合模型 金融时间序列
在线阅读 下载PDF
基于集合经验模式分解和K-奇异值分解字典学习的滚动轴承故障诊断 被引量:7
10
作者 李继猛 李铭 +3 位作者 姚希峰 王慧 于青文 王向东 《计量学报》 CSCD 北大核心 2020年第10期1260-1266,共7页
针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动... 针对经典K-奇异值分解算法构造的字典中原子形态受噪声、谐波干扰影响,进而降低冲击故障特征提取精度的问题,提出了基于集合经验模式分解和K-奇异值分解字典学习的冲击特征提取方法。该方法首先利用集合经验模式分解与Hurst指数对振动信号进行预处理,剔除谐波干扰;其次,利用经典K-奇异值分解算法和预处理信号构造超完备字典;然后,利用K-均值聚类算法对字典中的原子进行筛选;最后,利用正交匹配追踪算法实现冲击故障特征的稀疏表示。实验分析和工程应用验证了所提方法的有效性和实用性。 展开更多
关键词 计量学 滚动轴承 故障诊断 稀疏表示 集合经验模式分解 K-奇异值分解字典学习 K-均值聚类
在线阅读 下载PDF
改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:5
11
作者 阮荣刚 李友荣 +1 位作者 易灿灿 肖涵 《机械设计与制造》 北大核心 2019年第1期153-157,共5页
在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improv... 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 展开更多
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取
在线阅读 下载PDF
爆炸冲击波集合分解排列熵时变峰值降噪算法
12
作者 杜桂云 崔春生 +1 位作者 杨志飞 刘双峰 《探测与控制学报》 CSCD 北大核心 2024年第1期90-95,113,共7页
针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比... 针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比例距离下的含噪冲击波信号模型和实测数据来进行研究与验证。原始爆炸冲击波数据经CEEMDAN分解为若干个本征模态分量(IMFs);并以IMFs的MPE值作为分类指标,将IMFs分量划分为需滤波和存留两个类别,对含噪模型与实测数据进行降噪处理实验,将降噪处理后的IMFs分量和剩余的IMFs重构。试验结果表明,与贝塞尔低通数字滤波器、CEEMDAN降噪算法相比,该方法能够去除信号中含有的高频噪声,获得较好的降噪指标;同时尽可能地保留了信号中的尖峰与突变信息,是比较理想的爆炸冲击波信号降噪算法。 展开更多
关键词 爆炸冲击波 完全集合经验模式分解 排列熵 降噪
在线阅读 下载PDF
中值互补集合经验模态分解 被引量:3
13
作者 刘淞华 何冰冰 +3 位作者 郎恂 陈启明 张榆锋 苏宏业 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2544-2556,共13页
针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complemen... 针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD,CEEMD)的MS问题,证明了使用中值算子替代算术平均算子对抑制MS的有效性.为了兼具抑制MS和残留噪声的性能,MCEEMD算法首次在集合过程中结合了中值和平均算子.具体地,所提方法首先添加N对互补的白噪声至原信号中,并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions,IMFs),然后分别对其中互补相关的IMFs两两取平均得到N组IMFs,最后使用中值算子处理上述N组IMFs得到输出结果.对仿真信号与两个真实案例的分析结果表明,本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题,而且避免了单一使用中值算子的两个缺点:分解完备性差和IMFs中存在的毛刺现象. 展开更多
关键词 模态分裂 中值算子 互补白噪声 互补集合经验模式分解
在线阅读 下载PDF
一种改进的集合平均经验模态分解去噪方法 被引量:6
14
作者 屈中阳 李鸿光 《噪声与振动控制》 CSCD 2014年第5期171-176,共6页
针对现有非平稳信号去噪处理中的难点,提出一种改进的基于集合平均经验模态分解(EEMD)去噪方法,该方法根据本征模态函数(IMF)能量从被测信号中估计出噪声,使用估计的噪声代替EEMD方法中添加的噪声,最后将集合平均IMF分量累加得到去噪信... 针对现有非平稳信号去噪处理中的难点,提出一种改进的基于集合平均经验模态分解(EEMD)去噪方法,该方法根据本征模态函数(IMF)能量从被测信号中估计出噪声,使用估计的噪声代替EEMD方法中添加的噪声,最后将集合平均IMF分量累加得到去噪信号。使用相关性判据剔除了EMD分解产生的伪IMF分量,改进了噪声估计方法。仿真表明,改进的方法能够对调幅调频含噪信号进行有效的去噪处理。 展开更多
关键词 振动与波 集合平均经验模式分解 去噪 噪声估计 阈值处理
在线阅读 下载PDF
基于EEMD分解的直驱式机电作动器故障诊断 被引量:9
15
作者 刘俊 王占林 +1 位作者 付永领 郭彦青 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第12期1567-1571,共5页
基于集合经验模式分解(EEMD,Ensemble Empirical Mode Decomposition)算法,给出一种机载直驱式双余度机电作动器(DDDR-EMA,Direct-Driven Dual-Redundancy Electro-Mechanical Actuator)复合故障诊断方法.EEMD对信号加入有限幅度的高斯... 基于集合经验模式分解(EEMD,Ensemble Empirical Mode Decomposition)算法,给出一种机载直驱式双余度机电作动器(DDDR-EMA,Direct-Driven Dual-Redundancy Electro-Mechanical Actuator)复合故障诊断方法.EEMD对信号加入有限幅度的高斯白噪声,利用高斯白噪声频率均匀分布的统计特性使信号在不同尺度上保持连续性,解决了经验模式分解的模式混叠缺陷并保留了自适应性.将EEMD方法应用于机载DDDR-EMA故障诊断实验振动信号分析,先对实测信号进行分解,得到一组无模式混叠的固有模式函数;再采用不同的方法分析各频段,提取各频段包含的故障特征.实验结果表明:与经验模式分解相比EEMD能提高故障信号的分析精度,准确诊断机载DDDR-EMA的复合故障. 展开更多
关键词 直驱式双余度机电作动器 集合经验模式分解 故障诊断 模式混叠
在线阅读 下载PDF
基于EEMD-NExT的低频振荡主导模式工况在线辨识与预警 被引量:11
16
作者 汪颂军 刘涤尘 +4 位作者 廖清芬 周雨田 王亚俊 王乙斐 赵一婕 《电力自动化设备》 EI CSCD 北大核心 2014年第12期111-116,122,共7页
结合集合经验模式分解(EEMD)和自然激励技术(NEx T),基于广域测量系统(WAMS)的动态量测信息,提出低频振荡主导模式识别方法。该方法借助EEMD处理非平稳信号,利用EEMD时空滤波器、互相关系数和信号能量权重筛选出主导模式分量;通过NEx T... 结合集合经验模式分解(EEMD)和自然激励技术(NEx T),基于广域测量系统(WAMS)的动态量测信息,提出低频振荡主导模式识别方法。该方法借助EEMD处理非平稳信号,利用EEMD时空滤波器、互相关系数和信号能量权重筛选出主导模式分量;通过NEx T求互相关函数,并利用Teager能量算子识别时变幅值和频率,采用信号能量分析法辨识阻尼比并应用于预警系统。算例仿真结果表明,所提方法能够实时准确地辨识出系统的主导模式信息,且无需人工激励并剔除虚假模式,同时具有较强的抗噪性能。 展开更多
关键词 集合经验模式分解 自然激励技术 工况模式分析 低频振荡 主导模式识别 稳定性
在线阅读 下载PDF
基于集合谱峭度法的轴承故障诊断
17
作者 周晓君 刘胜兰 《舰船科学技术》 北大核心 2013年第9期86-91,共6页
轴承早期故障引起的微弱振动变化信号往往淹没在机械传动系统的背景振动噪声中,其故障特征提取困难。本文针对滚动轴承故障振动信号的非平稳性及调制特性,提出集合经验模式分解和谱峭度法合的滚动轴承故障特征信号提取及其故障诊断的新... 轴承早期故障引起的微弱振动变化信号往往淹没在机械传动系统的背景振动噪声中,其故障特征提取困难。本文针对滚动轴承故障振动信号的非平稳性及调制特性,提出集合经验模式分解和谱峭度法合的滚动轴承故障特征信号提取及其故障诊断的新方法——集合谱峭度法(Ensembled Kurtogram,EK)。该方法应用集合经验模式分解将振动信号分解为多个固有模式函数,分别计算各个固有模式函数的峭度值及其与故障工况下振动信号、正常工况下振动信号之间的相关性,根据IMFs自动选取规则选取合适的IMFs进行轴承故障信号的重构;然后针对重构后的信号进行谱峭度计算得到对应的峭度图,根据峭度图上最大值原则选取最佳带通滤波器进行滤波;最后运用包络解调后的信号进行故障诊断。本文通过模拟仿真和实验验证,验证了该算法的故障信号提取有效性和故障诊断能力。 展开更多
关键词 谱峭度法 集合经验模式分解 轴承 故障诊断
在线阅读 下载PDF
高压断路器振声联合故障诊断方法 被引量:61
18
作者 赵书涛 张佩 +1 位作者 申路 郭静 《电工技术学报》 EI CSCD 北大核心 2014年第7期216-221,共6页
针对现有的高压断路器机械故障诊断方法存在的不足,本文提出了一种新的高压断路器振声联合诊断机械故障的方法。此方法首先利用快速核独立分量分析(fast KICA)对采集到的声波信号进行盲源分离处理,并对处理后的声波信号和采集到的振动... 针对现有的高压断路器机械故障诊断方法存在的不足,本文提出了一种新的高压断路器振声联合诊断机械故障的方法。此方法首先利用快速核独立分量分析(fast KICA)对采集到的声波信号进行盲源分离处理,并对处理后的声波信号和采集到的振动信号进行改进集合经验模式分解(EEMD)。其次,对分解后的每一个固有模态函数(IMF)求其二维谱熵,并以此二维谱熵矩阵的变换矩阵作为支持向量机的输入特征向量对断路器机械状态进行识别。最后实验表明,振声联合复合分析方法有效提高了高压断路器机械故障诊断的正确性和实用性。 展开更多
关键词 高压断路器 振声联合 快速核独立分量分析 改进集合经验模式分解 二维谱熵支持向量机
在线阅读 下载PDF
变压器绕组多故障条件下的振动信号特征提取 被引量:37
19
作者 李莉 朱永利 宋亚奇 《电力自动化设备》 EI CSCD 北大核心 2014年第8期140-146,共7页
针对变压器绕组多种故障并发的工况,在分析变压器绕组振动机理的基础上,提出一种基于集合经验模式分解(EEMD)的振动信号特征提取方法。采用EEMD方法对变压器绕组振动信号进行分解得到各阶本征模函数(IMF),利用IMF能量和2范数构造特征矢... 针对变压器绕组多种故障并发的工况,在分析变压器绕组振动机理的基础上,提出一种基于集合经验模式分解(EEMD)的振动信号特征提取方法。采用EEMD方法对变压器绕组振动信号进行分解得到各阶本征模函数(IMF),利用IMF能量和2范数构造特征矢量,将该特征矢量作为变压器绕组状态识别的判据。利用Fisher判别法对所提方法的有效性进行验证。试验结果表明,利用所提方法提取的各状态特征矢量区别明显,与快速傅里叶变换(FFT)方法相比,所提方法可准确识别出变压器绕组的混合故障状态。 展开更多
关键词 变压器 绕组故障 故障分析 识别 振动分析 信号处理 集合经验模式分解 本征模函数 特征矢量
在线阅读 下载PDF
LMS方法的改进及联合EEMD在振动信号去噪中的应用 被引量:13
20
作者 张袁元 李舜酩 +2 位作者 胡伊贤 江星星 郭海东 《振动与冲击》 EI CSCD 北大核心 2013年第20期61-66,共6页
针对机械振动信号特征提取中的去噪问题,联合集合经验模式分解(EEMD)和最小均方算法(LMS)发展了一种自适应去噪方法。首先研究了LMS的固定步长固定阶数、变步长(VS)和变阶数(VT)的算法性能,提出在迭代过程中以比较阶数和步长变化时的最... 针对机械振动信号特征提取中的去噪问题,联合集合经验模式分解(EEMD)和最小均方算法(LMS)发展了一种自适应去噪方法。首先研究了LMS的固定步长固定阶数、变步长(VS)和变阶数(VT)的算法性能,提出在迭代过程中以比较阶数和步长变化时的最小均方误差期望为收敛方向,发展了一种联合变步长变阶数最小均方算法(VSVTLMS)的去噪方法;通过对原信号的EEMD分解,使各模式分量窄带化,进而通过VSVT-LMS对每个IMF分量进行去噪,有效避免LMS算法对宽频信号的不稳定性,同时也避免了EMD分解的不唯一性和去噪中阈值的选择问题。最后通过对仿真和实际车辆振动信号去噪,验证了方法在工程上的可行性。 展开更多
关键词 振动信号 集合经验模式分解 自适应滤波器 变阶数 变步长
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部