文中提出一种新型单级式隔离型模块化多电平级联变换器(isolated modular multilevel cascade converter,I-MMCC),其具有中压三相交流(medium voltage three-phase AC,MVAC_((T-P)))、中压单相交流(medium voltage single phase AC,MVAC...文中提出一种新型单级式隔离型模块化多电平级联变换器(isolated modular multilevel cascade converter,I-MMCC),其具有中压三相交流(medium voltage three-phase AC,MVAC_((T-P)))、中压单相交流(medium voltage single phase AC,MVAC_((S-P)))和低压直流(low voltage DC,LVDC)3种电压端口。该变换器可实现从LVDC到MVAC的单级式功率变换,MVAC_((T-P))与MVAC_((S-P))电压端口能够实现同频或变频的AC-AC功率自由变换,其单极性调制策略可避免隔离型AC-AC矩阵变换器双向开关管换流暂态过程中出现的电压尖峰等问题。首先,介绍I-MMCC子模块拓扑结构与调制策略,并建立子模块及单相I-MMCC平均等效数学模型;其次,分析MVAC_((T-P))与MVAC_((S-P))端口变频–变压工作原理、稳态功率与端口特性,对单相交流端口基于正交虚拟电路概念,建立控制模型,并推导出MVAC_((S-P))、MVAC_((T-P))端口功率约束关系。最后,通过搭建一套实验样机验证所提出拓扑结构的有效性和优越性。展开更多
DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性...DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。展开更多
在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线...在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。展开更多
多端直流输电与直流电网是解决新能源并网的一项重基金项目:国家自然科学基金项目(61374155);上海市自然科学基金项目(18ZR1418400)。Project Supported by National Natural Science Foundation of China(61374155);The Nature Science...多端直流输电与直流电网是解决新能源并网的一项重基金项目:国家自然科学基金项目(61374155);上海市自然科学基金项目(18ZR1418400)。Project Supported by National Natural Science Foundation of China(61374155);The Nature Science Foundation of Shanghai(18ZR1418400).要技术手段,不同直流电压等级间互联离不开各种类型的直流变换器。针对近海、远海全直流海上风电场,新能源直流源内部复杂性致使难以直接实现对称双极性直流输出;此外,海上换流站建设成本高,传统的非隔离型直流变换器含有较大的工频变压器,占地面积大。为了满足单极直流传输线与双极直流传输线间的互联,同时考虑到变换器的体积与成本,提出了一种不含隔离变压器双极性输出的直流变换器拓扑,并提出了与之相配合的调制与控制方法。该直流变换器拓扑与其他双极性输出直流变换器相比,不需要使用工频变压器,体积、成本降低;没有交直流变换过程,效率较高;开关频率低,损耗小;子模块可增减,有较好的冗余度与容错性。基于Matlab/Simulink对提出的拓扑进行仿真验证,通过搭建实验平台,验证了拓扑及控制方式的可行性。展开更多
文摘文中提出一种新型单级式隔离型模块化多电平级联变换器(isolated modular multilevel cascade converter,I-MMCC),其具有中压三相交流(medium voltage three-phase AC,MVAC_((T-P)))、中压单相交流(medium voltage single phase AC,MVAC_((S-P)))和低压直流(low voltage DC,LVDC)3种电压端口。该变换器可实现从LVDC到MVAC的单级式功率变换,MVAC_((T-P))与MVAC_((S-P))电压端口能够实现同频或变频的AC-AC功率自由变换,其单极性调制策略可避免隔离型AC-AC矩阵变换器双向开关管换流暂态过程中出现的电压尖峰等问题。首先,介绍I-MMCC子模块拓扑结构与调制策略,并建立子模块及单相I-MMCC平均等效数学模型;其次,分析MVAC_((T-P))与MVAC_((S-P))端口变频–变压工作原理、稳态功率与端口特性,对单相交流端口基于正交虚拟电路概念,建立控制模型,并推导出MVAC_((S-P))、MVAC_((T-P))端口功率约束关系。最后,通过搭建一套实验样机验证所提出拓扑结构的有效性和优越性。
文摘DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。
文摘在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。
文摘多端直流输电与直流电网是解决新能源并网的一项重基金项目:国家自然科学基金项目(61374155);上海市自然科学基金项目(18ZR1418400)。Project Supported by National Natural Science Foundation of China(61374155);The Nature Science Foundation of Shanghai(18ZR1418400).要技术手段,不同直流电压等级间互联离不开各种类型的直流变换器。针对近海、远海全直流海上风电场,新能源直流源内部复杂性致使难以直接实现对称双极性直流输出;此外,海上换流站建设成本高,传统的非隔离型直流变换器含有较大的工频变压器,占地面积大。为了满足单极直流传输线与双极直流传输线间的互联,同时考虑到变换器的体积与成本,提出了一种不含隔离变压器双极性输出的直流变换器拓扑,并提出了与之相配合的调制与控制方法。该直流变换器拓扑与其他双极性输出直流变换器相比,不需要使用工频变压器,体积、成本降低;没有交直流变换过程,效率较高;开关频率低,损耗小;子模块可增减,有较好的冗余度与容错性。基于Matlab/Simulink对提出的拓扑进行仿真验证,通过搭建实验平台,验证了拓扑及控制方式的可行性。