期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于隐高斯混合模型的人脑MRI分割方法 被引量:3
1
作者 梁恺彬 管一弘 《计算机工程与应用》 CSCD 北大核心 2018年第10期196-203,共8页
针对传统的高斯混合模型的抗噪性能和鲁棒性较差的缺点,提出一种基于隐高斯混合模型的人脑MRI分割方法。传统的高斯混合模型由于忽略了空间信息和未考虑分割结果的分布情况导致模型不完整。针对这些缺点,把分割结果的概率密度函数作为... 针对传统的高斯混合模型的抗噪性能和鲁棒性较差的缺点,提出一种基于隐高斯混合模型的人脑MRI分割方法。传统的高斯混合模型由于忽略了空间信息和未考虑分割结果的分布情况导致模型不完整。针对这些缺点,把分割结果的概率密度函数作为隐含数据引入到高斯混合模型,建立了非线性加权的隐高斯混合模型;同时引入了含空间信息与平滑系数的高斯权重置指数;运用期望最大化算法与牛顿迭代法对类均值,类方差以及平滑系数进行求解,最后根据最大后验概率准则得到人脑MRI的最终分割结果。经实验表明,提出的方法对人脑MRI具有很好的鲁棒性与抗噪性能。 展开更多
关键词 人脑MRI 空间信息 隐高斯混合模型 牛顿迭代法 期望最大化(EM)算法
在线阅读 下载PDF
基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析 被引量:28
2
作者 吕岸 胡振程 陈慧 《汽车工程》 EI CSCD 北大核心 2010年第7期630-634,共5页
基于驾驶模拟器实验数据,结合高斯混合隐马尔可夫模型(GM-HMM),对高速公路的超车行为进行辨识,并对驾驶员意图和超车行为是否正常进行分析。结果表明,基于GM-HMM的辨识方法能有效辨识多种驾驶工况下的不正常超车行为。
关键词 高速公路 超车行为 高斯混合马尔可夫模型
在线阅读 下载PDF
基于混合高斯隐马尔可夫模型的带式输送机堆煤时刻预测方法 被引量:1
3
作者 钱建生 李小斌 +1 位作者 秦文光 秦海初 《工矿自动化》 北大核心 2014年第11期26-30,共5页
提出了一种基于混合高斯隐马尔可夫模型的带式输送机堆煤时刻预测方法。该方法根据传感器采集的带式输送机功率时序数据建立带式输送机运行状态的混合高斯隐马尔可夫模型,基于该模型采用基于图的状态序列遍历算法和基于切普曼-柯尔莫哥... 提出了一种基于混合高斯隐马尔可夫模型的带式输送机堆煤时刻预测方法。该方法根据传感器采集的带式输送机功率时序数据建立带式输送机运行状态的混合高斯隐马尔可夫模型,基于该模型采用基于图的状态序列遍历算法和基于切普曼-柯尔莫哥罗夫方程的概率转移算法对带式输送机堆煤时刻进行预测:基于图的状态序列遍历算法通过寻找当前状态到堆煤状态的通路确定剩余时间;基于切普曼-柯尔莫哥罗夫方程的概率转移算法通过粒子群优化算法及切普曼-柯尔莫哥罗夫方程交叉验证来获取训练样本上失败状态的概率阈值,并计算当前的状态迁移到超过失败状态概率阈值的转移次数来确定剩余时间。基于煤矿生产实际数据集的实验验证了该方法可有效预测带式输送机的堆煤发生时刻。 展开更多
关键词 带式输送机 堆煤时刻 堆煤预测 剩余寿命 马尔可夫模型 混合高斯马尔科夫模型 切普曼-柯尔莫哥罗夫方程
在线阅读 下载PDF
基于高斯混合-隐马尔可夫模型的速差转向履带车辆横向控制驾驶员模型 被引量:17
4
作者 王博洋 龚建伟 +2 位作者 高天云 陈慧岩 席军强 《兵工学报》 EI CAS CSCD 北大核心 2017年第12期2301-2308,共8页
为解决基于离合器转向机的履带车辆在无人行驶条件下的横向控制问题,采用一种基于高斯混合-隐马尔可夫模型的统计学习方法构建驾驶员模型,以实现对驾驶员跟踪控制操控经验的表述。利用经过大量试验采集获得的经验驾驶员操控数据对模型... 为解决基于离合器转向机的履带车辆在无人行驶条件下的横向控制问题,采用一种基于高斯混合-隐马尔可夫模型的统计学习方法构建驾驶员模型,以实现对驾驶员跟踪控制操控经验的表述。利用经过大量试验采集获得的经验驾驶员操控数据对模型进行训练。以基于高斯混合模型表征的车辆速度和航向偏差作为隐马尔可夫模型的观测状态参量,并利用高斯混合模型对左右操纵杆位置进行转向模式划分,以转向模式作为隐马尔可夫模型的隐藏层状态参量,通过对模型的训练最终实现对于驾驶员操控经验以及车辆特性的统计学描述。利用上述模型对跟踪控制过程中的期望转向模式进行预测分析,结果表明该模型能够较准确地对转向模式进行预测。 展开更多
关键词 兵器科学与技术 履带车辆 横向控制 驾驶员模型 高斯混合-马尔可夫模型 机器学习 运动基元
在线阅读 下载PDF
基于高斯混合隐马尔科夫模型与人工神经网络的紧急换道行为预测方法 被引量:9
5
作者 于扬 梁军 +3 位作者 陈龙 陈小波 朱宁 华国栋 《中国机械工程》 EI CAS CSCD 北大核心 2020年第23期2874-2882,2890,共10页
为了有效降低因驾驶员紧急换道行为而诱发的交通事故,提高道路交通事故链阻断效率,提出一种基于高斯混合隐马尔科夫模型(GMM-HMM)和人工神经网络(ANN)的紧急换道行为预测方法。首先利用GMM-HMM对车辆行驶状态以及驾驶行为连续观察序列... 为了有效降低因驾驶员紧急换道行为而诱发的交通事故,提高道路交通事故链阻断效率,提出一种基于高斯混合隐马尔科夫模型(GMM-HMM)和人工神经网络(ANN)的紧急换道行为预测方法。首先利用GMM-HMM对车辆行驶状态以及驾驶行为连续观察序列进行换道意图辨识,采用ANN预测下一时段的驾驶行为,再预测换道过程中的横向加速度变化率,从而判断紧急换道的危险程度。驾驶员在环仿真实验及实车实验结果表明,该方法预测避险成功率达92.83%,实验避险成功率达90.32%。该方法能有效地对紧急换道行为进行提前警告与干预。 展开更多
关键词 换道行为预测 高斯混合马尔可夫模型 人工神经网络 道路交通事故链阻断
在线阅读 下载PDF
基于混合高斯隐马尔科夫模型的滑坡发生时间预报
6
作者 李丽敏 夏梦凡 魏雄伟 《防灾减灾工程学报》 CSCD 北大核心 2023年第2期301-307,333,共8页
滑坡发生时间预报在防灾减灾工作中非常重要,准确的预报能够有效预防灾害发生可能造成的灾难性结果。为解决当前滑坡预报中仅仅实现对滑坡位移等相关参数的预测和估计,而未最终计算出滑坡发生时间的问题,提出采用混合高斯隐马尔科夫模型... 滑坡发生时间预报在防灾减灾工作中非常重要,准确的预报能够有效预防灾害发生可能造成的灾难性结果。为解决当前滑坡预报中仅仅实现对滑坡位移等相关参数的预测和估计,而未最终计算出滑坡发生时间的问题,提出采用混合高斯隐马尔科夫模型(MOG‐HMM)建立滑坡发生时间预报模型,即对滑坡灾害演化过程全周期数据利用混合高斯算法计算出宏观信息预报判据,与隐马尔科夫模型中的状态相匹配,建立滑坡演化状态模型,该模型能够反映全周期数据的多个状态,当需要对实时采集的位移数据进行时间预报时,首先利用解码算法对当前数据解码,即计算出其属于滑坡的哪个状态,然后利用Dijkstra最优路径规划算法,计算出从当前状态到达滑坡发生状态的时间,实现滑坡发生时间预报。通过对新滩滑坡和卧龙寺滑坡灾害全周期数据进行仿真验证,结果表明,本文方法能够比较准确地计算出滑坡发生的时间,同时利用评价指标对预报的结果进行测试,符合预报指标精度要求。 展开更多
关键词 滑坡灾害 时间预报 全周期数据 状态匹配 混合高斯马尔科夫模型
在线阅读 下载PDF
考虑城市道路局部交通运行环境随机变化的跟驰模型
7
作者 陈昱光 梁子禄 +2 位作者 胡山 杨彬 林弘灏 《安全与环境学报》 北大核心 2025年第4期1391-1399,共9页
针对现有模型较少考虑交通运行环境拥挤情况对车辆跟驰行为的影响以及交通运行环境在行驶过程中受到外部影响随机变化的情况,试图建立更加符合不同交通运行环境的车辆跟驰模型。为此,提取速度、速度标准差、局部空间占有率三个指标,基... 针对现有模型较少考虑交通运行环境拥挤情况对车辆跟驰行为的影响以及交通运行环境在行驶过程中受到外部影响随机变化的情况,试图建立更加符合不同交通运行环境的车辆跟驰模型。为此,提取速度、速度标准差、局部空间占有率三个指标,基于模糊C均值(Fuzzy C-Means, FCM)算法对交通运行环境进行聚类分析并实现有效量化。针对交通运行环境随时间变化的情况,拟合不同运行环境下的期望速度函数,引入高斯混合隐马尔可夫模型(Hidden Markov Model with Gaussian Mixture Model, GMMHMM)实现不同交通运行环境的识别及期望速度函数的转换,进而构建一种考虑不同交通运行环境下的车辆跟驰模型。最后,通过下一代模拟(Next Generation Simulation, NGSIM)轨迹数据,利用遗传算法标定模型参数。结果表明,与经典的全速度差(Full Velocity Difference, FVD)模型相比,所提出的跟驰模型能够更好地拟合车辆跟驰数据,其平均绝对误差(Mean Absolute Error, MAE)、均方根误差(Root Mean Square Error, RMSE)分别降低了35%、39%,R2提高了238%。 展开更多
关键词 安全工程 交通运行环境 跟驰模型 高斯混合马尔可夫模型 全速度差模型
在线阅读 下载PDF
基于MG-HMT模型的正交有限脊波域图像分割
8
作者 夏平 唐庭龙 +1 位作者 向学军 邓丽华 《数据采集与处理》 CSCD 北大核心 2011年第3期308-313,共6页
针对图像分割中的过分割问题,提出了一种基于图像混合高斯-隐Markov树(Mixture Gaussian-hiddenmarkov tree,MG-HMT)模型的正交有限脊波分析的图像分割算法。正交有限脊波变换处理信息时具有检测信号线奇异的能力,在图像分割中为准确定... 针对图像分割中的过分割问题,提出了一种基于图像混合高斯-隐Markov树(Mixture Gaussian-hiddenmarkov tree,MG-HMT)模型的正交有限脊波分析的图像分割算法。正交有限脊波变换处理信息时具有检测信号线奇异的能力,在图像分割中为准确定位信息的边缘、轮廓提供了有力的支持。其次,对图像的小波系数建立了混合高斯-隐Markov树(MG-HMT)模型来描述其在不同尺度子带间的相关性,并利用小波系数自身的传递性和同层小波系数相关性进行补偿处理。仿真结果表明,采用本文算法实现的图像分割,有效地检测出图像信息的线奇异,从而减小了由于干扰在梯度图中造成虚假的局部极值而产生的过分割现象,准确地定位了图像的区域信息。 展开更多
关键词 图像分割 正交有限脊波分析 混合高斯-Markov树模型 RADON变换
在线阅读 下载PDF
有级转向履带车辆的驾驶员操控行为模型 被引量:5
9
作者 王博洋 龚建伟 +3 位作者 熊光明 张瑞增 陈慧岩 席军强 《兵工学报》 EI CAS CSCD 北大核心 2020年第12期2379-2388,共10页
为解决有级转向履带车辆驾驶员操控经验的表征问题,以采集得到的大量真实驾驶数据为依托,提出一种基于操控基元序列的驾驶员操控行为表征模型。操控基元以高斯混合模型表征,并以有向图的形式完成驾驶员操控基元切换序列的提取与类别辨识... 为解决有级转向履带车辆驾驶员操控经验的表征问题,以采集得到的大量真实驾驶数据为依托,提出一种基于操控基元序列的驾驶员操控行为表征模型。操控基元以高斯混合模型表征,并以有向图的形式完成驾驶员操控基元切换序列的提取与类别辨识;依据不同类别的操控基元序列辨识结果完成了对驾驶数据的重分组,利用隐马尔可夫-高斯混合模型完成每一个类别下的驾驶员操控行为模型训练。结果表明:所提取出的操控基元序列既能完成对驾驶员转向操控基元切换行为的表征,又能实现对轨迹基元类别的合理划分;在给定期望轨迹所对应的预测时域内,驾驶员操控行为模型能够实现特定条件下的驾驶员转向操控量预测,预测平均偏差在4.2%以内。 展开更多
关键词 履带车辆 驾驶员模型 操控基元序列 马尔可夫-高斯混合模型
在线阅读 下载PDF
基于MHMMs模型的面部表情识别研究 被引量:1
10
作者 汤丽君 邹北骥 +2 位作者 王磊 彭小宁 李燕 《工程图学学报》 CSCD 北大核心 2007年第5期56-61,共6页
针对静态人脸表情识别方法的不足,提出了一种改进的基于运动特征的动态人脸表情识别方法。以表情视频序列为研究对象,提出了基于相位形式表示脸部运动特征,处理这些运动特征并组成时序特征序列,最后将其输入到改进的高斯混合隐马尔可夫... 针对静态人脸表情识别方法的不足,提出了一种改进的基于运动特征的动态人脸表情识别方法。以表情视频序列为研究对象,提出了基于相位形式表示脸部运动特征,处理这些运动特征并组成时序特征序列,最后将其输入到改进的高斯混合隐马尔可夫模型进行训练和测试,分析识别6种基本的面部表情。基于改进的算法,实现了一个动态面部表情识别实验系统,实验结果表明该方法简化了计算,减少了矢量量化误差。 展开更多
关键词 计算机应用 表情识别 高斯混合马尔可夫模型 运动特征
在线阅读 下载PDF
基于GMM-HMM模型的智能下肢假肢运动意图识别 被引量:7
11
作者 盛敏 刘双庆 +1 位作者 王婕 苏本跃 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第5期169-178,共10页
传统下肢假肢运动意图识别方法常使用多模态传感器信号,带来一定的复杂性以及模式转换识别一般带有滞后性,提出了基于数据驱动下的智能下肢假肢运动意图识别方法。在对单侧下肢截肢者运动模式进行了重定义后,仅使用惯性传感器,采集健肢... 传统下肢假肢运动意图识别方法常使用多模态传感器信号,带来一定的复杂性以及模式转换识别一般带有滞后性,提出了基于数据驱动下的智能下肢假肢运动意图识别方法。在对单侧下肢截肢者运动模式进行了重定义后,仅使用惯性传感器,采集健肢侧处于摆动相的时序数据。选择高斯混合-隐马尔可夫模型作为分类器,对下肢假肢的运动意图进行识别。实验结果表明,该算法在模式空间中的一组基模式:平地行走、上坡、下坡、上楼和下楼5种稳态模式中,识别率达到98.99%,在包含5种稳态模式和8类转换模式的13类运动模式中的识别率可达到96.92%。所提出的方法可以在下肢假肢运动意图识别性能上有较大提升,帮助单侧下肢截肢者实现自然、流畅、稳定的行走。 展开更多
关键词 运动意图识别 惯性传感器 高斯混合-马尔可夫模型 模式转换 摆动相
在线阅读 下载PDF
基于瓶颈复合特征的声学模型建立方法 被引量:3
12
作者 郑文秀 赵峻毅 +1 位作者 文心怡 姚引娣 《计算机工程》 CAS CSCD 北大核心 2020年第11期301-305,314,共6页
针对梅尔频率倒谱系数(MFCC)语音特征不能有效反映连续帧之间有效信息的问题,基于深度神经网络相关性和紧凑性特征,提出一种融合神经网瓶颈特征与MFCC特征的复合特征构造方法,提高语音的表征能力和建模能力。从语音数据中提取MFCC特征... 针对梅尔频率倒谱系数(MFCC)语音特征不能有效反映连续帧之间有效信息的问题,基于深度神经网络相关性和紧凑性特征,提出一种融合神经网瓶颈特征与MFCC特征的复合特征构造方法,提高语音的表征能力和建模能力。从语音数据中提取MFCC特征作为输入数据,将MFCC特征和BN特征进行串接得到新的复合特征,并进行GMM-HMM声学建模。在TIMIT数据库上的实验结果表明,与单一的瓶颈特征和深度神经网络后验特征相比,该方法识别率明显提升。 展开更多
关键词 深度神经网络 梅尔频率倒谱系数 瓶颈特征 复合特征 高斯混合模型-马尔科夫模型
在线阅读 下载PDF
基于CGHMM的轴承故障音频信号诊断方法 被引量:15
13
作者 陆汝华 段盛 +1 位作者 杨胜跃 樊晓平 《计算机工程与应用》 CSCD 北大核心 2009年第11期223-225,234,共4页
轴承音频信号包含其运行状态的重要信息,通过分析这些信息就能对轴承故障进行有效诊断。率先引入基于连续高斯混合密度隐马尔可夫模型的轴承故障音频诊断方法,避免矢量量化带来的数据处理误差,提高了系统诊断精度;引入基于聚类算法的模... 轴承音频信号包含其运行状态的重要信息,通过分析这些信息就能对轴承故障进行有效诊断。率先引入基于连续高斯混合密度隐马尔可夫模型的轴承故障音频诊断方法,避免矢量量化带来的数据处理误差,提高了系统诊断精度;引入基于聚类算法的模型参数初始化方法和标定系数的前向-后向算法,简化系统复杂度,加快了训练和诊断速度,进一步提高了诊断精度。实验结果表明,诊断精度达到98.75%,具有很好的应用前景。 展开更多
关键词 轴承 故障诊断 连续高斯混合密度马尔可夫模型 音频信号
在线阅读 下载PDF
基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究 被引量:14
14
作者 张星辉 康建设 +2 位作者 高存明 曹端超 滕红智 《振动与冲击》 EI CSCD 北大核心 2013年第15期20-25,31,共7页
提出了基于混合高斯隐马尔可夫模型的齿轮箱状态识别与剩余使用寿命预测新方法。建立了基于聚类评价指标的状态数优化方法,通过计算待识别特征向量的概率值来识别齿轮箱当前状态。在状态识别的基础上,提出了剩余使用寿命计算方法。最后... 提出了基于混合高斯隐马尔可夫模型的齿轮箱状态识别与剩余使用寿命预测新方法。建立了基于聚类评价指标的状态数优化方法,通过计算待识别特征向量的概率值来识别齿轮箱当前状态。在状态识别的基础上,提出了剩余使用寿命计算方法。最后,利用齿轮箱全寿命实验数据进行验证,结果表明,该方法可以有效的识别齿轮箱状态并实现了剩余使用寿命预测,平均预测正确率为90.94%,为齿轮箱的健康管理提供了科学依据。 展开更多
关键词 混合高斯马尔可夫模型 剩余使用寿命预测 状态识别
在线阅读 下载PDF
基于多状态MOG-HMM和Viterbi的航空发动机突发故障预测 被引量:8
15
作者 李丽敏 王仲生 姜洪开 《振动.测试与诊断》 EI CSCD 北大核心 2014年第2期310-314,399,共5页
针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确... 针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确定状态数、状态转移矩阵、观察值概率分布以及最终的突发故障状态;然后,对新采集的观测数据,通过Viterbi算法解码出该观测数据对应的当前状态;最后,计算该状态到达突发故障状态的时间间隔,从而可以对突发故障进行预测。仿真和实验结果表明,该方法能够实现对突发故障的预测,并且符合标准预测指标的要求。 展开更多
关键词 多状态混合高斯马尔科夫模型 VITERBI算法 突发故障预测 航空发动机
在线阅读 下载PDF
基于MFCC和HMM的气固流型辨识 被引量:2
16
作者 胡红利 闫洁冰 +1 位作者 邢文奇 张炜 《沈阳工业大学学报》 EI CAS 北大核心 2013年第5期555-560,共6页
针对气力输送管道中测控装置后常见的三种过渡流型,即中心流、环状流和层状流,采用静电传感器作为测量装置获得静电流动噪声信号,借鉴语音信号处理方法,提取静电流动噪声信号的梅尔频率倒谱系数(MFCC)及其一阶差分作为特征参数,用特征... 针对气力输送管道中测控装置后常见的三种过渡流型,即中心流、环状流和层状流,采用静电传感器作为测量装置获得静电流动噪声信号,借鉴语音信号处理方法,提取静电流动噪声信号的梅尔频率倒谱系数(MFCC)及其一阶差分作为特征参数,用特征参数训练连续高斯混合密度隐马尔科夫模型(CGHMM),建立不同流型的模型库,再用训练好的CGHMM模型对提取的特征参数进行分类,进而实现流型识别.实验结果表明,该方法识别率达到98%,为气固流流型识别及气力输送测控装置提供了新的研究方法. 展开更多
关键词 气固两相流 测控装置 语音信号处理 流型识别 梅尔频率倒谱系数 静电传感器 流动噪声信号 连续高斯混合密度马尔科夫模型
在线阅读 下载PDF
基于GM-HMM的DCT车辆驾驶员起步意图辨识研究 被引量:1
17
作者 刘海江 苏博炜 《汽车技术》 CSCD 北大核心 2020年第1期19-24,共6页
针对当前DCT控制系统对起步意图辨识准确度不高的问题,提出了一种基于高斯混合隐马尔科夫模型(GMHMM)的起步意图辨识方法:根据DCT车辆实车起步纵向加速度分布特性,将起步过程分为8个时段,基于K均值聚类算法对各时段内平缓起步、一般起... 针对当前DCT控制系统对起步意图辨识准确度不高的问题,提出了一种基于高斯混合隐马尔科夫模型(GMHMM)的起步意图辨识方法:根据DCT车辆实车起步纵向加速度分布特性,将起步过程分为8个时段,基于K均值聚类算法对各时段内平缓起步、一般起步以及紧急起步进行定义,在此基础上对各时段3类GM-HMM进行训练,通过对比0.3 s内油门踏板开度时间序列在不同模型中的对数似然概率确定当前驾驶员的起步意图。经过验证,模型的平均查全率达88.7%,耗时7 ms,具有较高的辨识准确率和较好的实时性。 展开更多
关键词 DCT起步过程 起步意图 高斯混合马尔科夫模型
在线阅读 下载PDF
使用GA初始化CGHMM参数的轴承故障诊方法
18
作者 陆汝华 颜文燕 《噪声与振动控制》 CSCD 2016年第2期180-184,共5页
连续高斯混合密度隐马尔可夫模型(Continuous Gaussian Mixture Hidden Markov Model,CGHMM)在故障诊断领域得到了广泛应用,取得了较好效果。CGHMM训练模型较大、局部最优,但模型参数初始化值会直接影响迭代收敛速度和模型效用。全局最... 连续高斯混合密度隐马尔可夫模型(Continuous Gaussian Mixture Hidden Markov Model,CGHMM)在故障诊断领域得到了广泛应用,取得了较好效果。CGHMM训练模型较大、局部最优,但模型参数初始化值会直接影响迭代收敛速度和模型效用。全局最优的遗传算法(Genetic Algorithm,GA)初始化CGHMM模型参数,为CGHMM训练提供了一个好的初始值,不仅可以加快收敛速度,还可以得到一个更好的模型。通过GA初始化CGHMM、CGHMM训练和CGHMM诊断过程等三个方面的仿真实验和比较分析可以得出,该方法具有训练速度快和CGHMM模型好的优点。在最后的CGHMM诊断仿真实验中,该方法诊断精度为100%,高于经典方法的96%,表明GA确实可以成功应用于CGHMM参数初始化,是一种可行的故障诊断方法。 展开更多
关键词 振动与波 遗传算法 初始化 连续高斯混合密度马尔可夫模型 故障诊断
在线阅读 下载PDF
基于驾驶员操纵及车辆运动轨迹信息的驾驶分心辨识方法 被引量:4
19
作者 王加 陈慧 《汽车技术》 北大核心 2013年第10期14-18,共5页
提出了一种驾驶分心辨识方法,该方法采用的信号可从配备了车道偏离报警系统的车辆上获得。在驾驶模拟器上,驾驶员通过在驾驶过程中执行第二任务模拟分心驾驶,从而获得专注与分心两种驾驶状态下的数据。采用车辆偏航角以及转向盘转速的... 提出了一种驾驶分心辨识方法,该方法采用的信号可从配备了车道偏离报警系统的车辆上获得。在驾驶模拟器上,驾驶员通过在驾驶过程中执行第二任务模拟分心驾驶,从而获得专注与分心两种驾驶状态下的数据。采用车辆偏航角以及转向盘转速的标准差作为辨识特征量,基于高斯混合隐马尔可夫模型,建立了专注与分心的驾驶员状态模型。对模型的离线验证表明,该方法对驾驶分心辨识具有较高的准确率。 展开更多
关键词 驾驶分心辨识 驾驶操纵 车辆运动轨迹 高斯混合马尔可夫模型
在线阅读 下载PDF
基于GMM-HMM的话题生命周期状态识别及趋势预测方法 被引量:3
20
作者 朱恒民 蔡婷婷 魏静 《现代情报》 CSSCI 2023年第3期26-32,41,共8页
[目的/意义]本研究对正处于演化过程中的话题进行状态识别及趋势预测,为相关部门了解话题现状,对话题进行有效监管提供科学依据。[方法/过程]首先,考虑网民情感,结合话题的新颖度和关注度,构建话题生命周期状态观测指标;其次,基于隐马... [目的/意义]本研究对正处于演化过程中的话题进行状态识别及趋势预测,为相关部门了解话题现状,对话题进行有效监管提供科学依据。[方法/过程]首先,考虑网民情感,结合话题的新颖度和关注度,构建话题生命周期状态观测指标;其次,基于隐马尔可夫模型(HMM)和高斯混合模型(GMM)的原理,提出话题生命周期状态识别及趋势预测方法;最后,选用微博话题构建数据集,设计对比实验,验证方法的有效性。[结果/结论]基于GMM-HMM的话题状态识别及趋势预测方法的F1值和准确率均高于87%,MAPE低于3.5%,相较于GaussianHMM和BP神经网络具有较大优势。 展开更多
关键词 话题生命周期状态 话题状态识别 话题趋势预测 高斯混合马尔可夫模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部