期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
隐马尔科夫模型在三维模型自动分类中的应用 被引量:3
1
作者 郭竞 周明全 +1 位作者 耿国华 李超 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期211-215,共5页
针对三维模型的分类问题,提出了一种基于隐马尔科夫模型(HMM)和最大期望(EM)算法的三维模型自动分类方法。将HMM引入三维模型自动分类问题中使得更多先验知识在分类过程中被利用。算法首先对三维模型进行预处理和组合切分,并提取各切分... 针对三维模型的分类问题,提出了一种基于隐马尔科夫模型(HMM)和最大期望(EM)算法的三维模型自动分类方法。将HMM引入三维模型自动分类问题中使得更多先验知识在分类过程中被利用。算法首先对三维模型进行预处理和组合切分,并提取各切分部分的形状直方图特征。对形状直方图特征进行离散归一化后形成HMM模型在某一时刻的观测值,这些观测值将用来训练HMM参数。HMM参数通过EM算法进行估计。最后通过计算未知模型和各类模型的HMM参数间的最大后验概率,获得三维模型的分类结果。在HMM建模过程中利用HMM本身所具有的时序性来描述三维模型的空间几何结构和局部几何特征。实验表明该方法在三维模型自动分类中有较高的准确率。 展开更多
关键词 三维模型分类 马尔科夫模型 期望-最大化算法 相似度
在线阅读 下载PDF
脑-机接口中新的脑电数据分类方法 被引量:1
2
作者 唐艳 柳建新 龚安栋 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第6期1034-1038,共5页
根据自发脑电的特点,将HMM-AR模型算法运用到脑电状态的分类中,证明它是一种非常有用的分析脑-机接口方法。将Laplacian filter、ICA和HMM-AR方法相结合,用想象左右手运动的BCI数据进行识别,得到了很好的分类结果,有效地区分脑电中运动... 根据自发脑电的特点,将HMM-AR模型算法运用到脑电状态的分类中,证明它是一种非常有用的分析脑-机接口方法。将Laplacian filter、ICA和HMM-AR方法相结合,用想象左右手运动的BCI数据进行识别,得到了很好的分类结果,有效地区分脑电中运动与非运动两种状态。该算法能够在运动开始后1 s内检验到脑电信号的变化,从而证明了该算法在BCI的实用性,达到了良好的识别效果。 展开更多
关键词 -机接口 脑电信号 隐马尔科夫-自回归算法 独立成分分量
在线阅读 下载PDF
基于SA-CPSO优化HSMM的转辙机故障预测模型研究 被引量:9
3
作者 陈永刚 戴乾军 李俊武 《铁道科学与工程学报》 CAS CSCD 北大核心 2019年第4期1050-1057,共8页
针对目前铁路现场转辙机PHM中故障发生的模糊性与随机性等不确定问题,提出一种基于自适应混沌粒子群(SA-CPSO)优化隐半马尔科夫(HSMM)的设备退化过程故障预测模型。根据转辙机全生命周期机械部件状态退化过程对其进行退化状态划分;建立S... 针对目前铁路现场转辙机PHM中故障发生的模糊性与随机性等不确定问题,提出一种基于自适应混沌粒子群(SA-CPSO)优化隐半马尔科夫(HSMM)的设备退化过程故障预测模型。根据转辙机全生命周期机械部件状态退化过程对其进行退化状态划分;建立SA-CPSO优化HSMM的设备状态评估和故障预测模型,再结合前向-后向算法对优化后的模型进行参数估计;通过实例分析验证该方法的有效性和可行性,实现传统信号维修策略的方法改进。 展开更多
关键词 转辙机 故障预测 自适应混沌粒子群 马尔科夫 前向-后向算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部