期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多模型融合的电力运检命名实体识别 被引量:3
1
作者 孙玉芹 肖静婷 王海超 《科学技术与工程》 北大核心 2023年第36期15545-15552,共8页
为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-ter... 为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-term,HCB)模型方法研究了电力运检命名实体识别问题。HCB模型分为两层,第一层使用隐马尔可夫模型(hidden Markov model,HMM)、条件随机场(conditional random fields,CRF)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)模型进行训练预测,再将预测结果输入第二层的CRF模型进行训练,经过双层模型训练预测得出最后的命名实体。结果表明:在电力运检命名实体识别问题上HCB模型的精确率、召回率及F1值等指标明显优于单模型以及其他的融合模型。可见HCB模型能有效解决电力运检命名实体识别问题。 展开更多
关键词 电力运检知识图谱 模型融合 命名实体识别 马尔可夫-条件随机-双向长短期记忆网络(hcb)模型
在线阅读 下载PDF
基于方剂数据集的知识图谱构建研究 被引量:4
2
作者 李灿 镇可涵 +1 位作者 唐东昕 解丹 《世界中医药》 CAS 北大核心 2024年第9期1329-1333,共5页
目的:构建基于方剂数据集的知识图谱,以系统性地展示方剂实体及其之间的关系。方法:首先建立方剂数据处理与知识图谱构建的规范化流程,获取方剂数据集,然后在4种常用命名实体识别模型中遴选最优模型进行实体抽取,最后利用Neo4j图数据库... 目的:构建基于方剂数据集的知识图谱,以系统性地展示方剂实体及其之间的关系。方法:首先建立方剂数据处理与知识图谱构建的规范化流程,获取方剂数据集,然后在4种常用命名实体识别模型中遴选最优模型进行实体抽取,最后利用Neo4j图数据库构建知识图谱。结果:最终遴选出基于Transformer的双向编码模型-双向长短期记忆网络-条件随机场(BERT-BiLSTM-CRF)模型,从数据集中抽取出症状、中西医病名、中医证候等医学实体,平均F1值达90.55%,形成了规范的方剂数据集并构建了方剂知识图谱。结论:利用本文方法抽取出的医学实体为中医药的临床实践和科学研究提供了系统性展示方剂实体及其之间关系的可靠数据基础。所建立的方剂知识图谱实现了中药方剂的知识检索,不仅有助于发现方剂数据中的潜在知识与内在关系,而且为中医药领域的信息整合和知识发现提供了坚实基础,推动中医药的现代化进程。 展开更多
关键词 方剂 数据处理 知识图谱 规范化 命名实体识别 Neo4j图数据库 基于Transformer的双向编码模型-双向长短期记忆网络-条件随机模型 中医药
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部