该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概...该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。展开更多
该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构...该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构造了待分图像小波域模型——以类属为隐状态的混合长拖尾模型,将隐类属的马尔可夫随机场推广到小波域上,并用改进的上下文模型估计尺度间转移概率,最后推导出了新的最大后验(Maximum A Posteriori,MAP)分割公式。仿真结果证明,该算法具有鲁棒性能够有效地抑制噪声对图像的影响,得到准确的分割结果。展开更多
为了克服传统马尔可夫随机场模型在海洋溢油识别中对合成孔径雷达(Synthetic Aperture Radar,SAR)图像相干斑噪声高敏感性以及溢油边界识别模糊等问题,文章提出一种超像素尺度下边缘约束隐马尔可夫随机场(Hidden Markov Random Fields,H...为了克服传统马尔可夫随机场模型在海洋溢油识别中对合成孔径雷达(Synthetic Aperture Radar,SAR)图像相干斑噪声高敏感性以及溢油边界识别模糊等问题,文章提出一种超像素尺度下边缘约束隐马尔可夫随机场(Hidden Markov Random Fields,HMRF)的SAR图像溢油识别算法(Edge-Corrected HMRF at the Super-Pixel Scale,SE-HMRF)。利用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)对SAR图像进行超像素分割,克服SAR图像中相干斑噪声的影响。为了提高溢油识别的准确性,在超像素分割基础上构建HMRF描述图像的空间关系,根据贝叶斯定理将溢油识别问题转化为能量函数最小化问题;为了克服SLIC对溢油边缘过分割或欠分割,将溢油边缘信息引入到能量函数中约束溢油识别结果。为了验证本文提出算法对溢油识别的准确性,选取Sentinel-1卫星SAR图像进行对比实验,本文提出算法溢油识别结果的Kappa系数和概率兰德指数分别达到0.951和0.954,全局一致性误差仅为0.024,定性评价与定量评价的结果均优于对比算法,说明文章提出算法能够在保持识别效率的同时获得准确的溢油识别结果。展开更多
提出一种基于贪心EM算法的HMRF遥感影像变化检测算法。该算法采取PCA与差值法相结合的方式来构造差分影像。首先,采用隐马尔可夫随机场(Hidden Markov Random Field,HMRF)模型描述空间上下文信息,并构造系统能量函数;然后,利用贪心EM算...提出一种基于贪心EM算法的HMRF遥感影像变化检测算法。该算法采取PCA与差值法相结合的方式来构造差分影像。首先,采用隐马尔可夫随机场(Hidden Markov Random Field,HMRF)模型描述空间上下文信息,并构造系统能量函数;然后,利用贪心EM算法克服EM算法假定混合成分数为已知、迭代结果过分依赖初始值、可能收敛到局部最大点或收敛到参数空间边界的缺点,能够准确学习分布模型结构和参数,发现数据对模型的最佳匹配;最后,通过条件迭代模型(Iterated Conditional Modes,ICM)优化算法求解能量函数最优解,获取变化区域。实验结果表明,该算法能够更好地保持影像的结构性,有效去除孤立噪声。展开更多
文摘该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。
文摘该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构造了待分图像小波域模型——以类属为隐状态的混合长拖尾模型,将隐类属的马尔可夫随机场推广到小波域上,并用改进的上下文模型估计尺度间转移概率,最后推导出了新的最大后验(Maximum A Posteriori,MAP)分割公式。仿真结果证明,该算法具有鲁棒性能够有效地抑制噪声对图像的影响,得到准确的分割结果。
文摘为了克服传统马尔可夫随机场模型在海洋溢油识别中对合成孔径雷达(Synthetic Aperture Radar,SAR)图像相干斑噪声高敏感性以及溢油边界识别模糊等问题,文章提出一种超像素尺度下边缘约束隐马尔可夫随机场(Hidden Markov Random Fields,HMRF)的SAR图像溢油识别算法(Edge-Corrected HMRF at the Super-Pixel Scale,SE-HMRF)。利用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)对SAR图像进行超像素分割,克服SAR图像中相干斑噪声的影响。为了提高溢油识别的准确性,在超像素分割基础上构建HMRF描述图像的空间关系,根据贝叶斯定理将溢油识别问题转化为能量函数最小化问题;为了克服SLIC对溢油边缘过分割或欠分割,将溢油边缘信息引入到能量函数中约束溢油识别结果。为了验证本文提出算法对溢油识别的准确性,选取Sentinel-1卫星SAR图像进行对比实验,本文提出算法溢油识别结果的Kappa系数和概率兰德指数分别达到0.951和0.954,全局一致性误差仅为0.024,定性评价与定量评价的结果均优于对比算法,说明文章提出算法能够在保持识别效率的同时获得准确的溢油识别结果。