期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向深度神经网络训练的数据差分隐私保护随机梯度下降算法 被引量:5
1
作者 李英 贺春林 《计算机应用与软件》 北大核心 2020年第4期252-259,共8页
针对传统深度神经网络所采用的随机梯度下降算法忽略了对数据集隐私性保护的缺点,提出一种基于数据差分隐私保护的随机梯度下降算法。引入范数剪切与附加高斯噪声操作,对传统梯度更新策略进行改进。为衡量每次迭代过程中对数据隐私性的... 针对传统深度神经网络所采用的随机梯度下降算法忽略了对数据集隐私性保护的缺点,提出一种基于数据差分隐私保护的随机梯度下降算法。引入范数剪切与附加高斯噪声操作,对传统梯度更新策略进行改进。为衡量每次迭代过程中对数据隐私性的破坏,提出隐私损失累积函数在迭代过程中对数据隐私性的侵犯程度进行度量。MNIST手写数字识别和CIFAR-10图像分类实验表明,该算法在保护数据集隐私性的同时,对手写数字以及图像分类的识别准确率分别超过了90%和70%,且相较于传统的随机梯度下降算法,其准确率提升了5%以上。该算法在实际工程中能够有效兼顾数据隐私性保护与神经网络辨识准确度。 展开更多
关键词 深度神经网络 差分隐私 训练集 随机梯度下降 范数剪切 隐私损失累积函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部