随机动力学实验验证是非线性随机动力学研究的难点问题。本文基于van der Pol电路,重点讨论多稳态系统中的随机P-分岔现象,分别探究了噪声强度、阻尼系数变化对随机动力学响应的影响,定性验证了随机P-分岔结果,即噪声强度、阻尼系数变...随机动力学实验验证是非线性随机动力学研究的难点问题。本文基于van der Pol电路,重点讨论多稳态系统中的随机P-分岔现象,分别探究了噪声强度、阻尼系数变化对随机动力学响应的影响,定性验证了随机P-分岔结果,即噪声强度、阻尼系数变化都能导致幅值概率密度峰的数目变化。为进一步开展多稳态系统随机动力学实验研究奠定较好的基础。展开更多
为深入了解Bonhoeffer-van der Pol系统在随机激励下系统动力学行为的演化规律,研究了随机Bonhoeffer-van der Pol系统的稳态响应和随机分岔。借助路径积分方法、高斯闭合方法和蒙特卡洛模拟等,求解了噪声激励下Bonhoeffer-van der Pol...为深入了解Bonhoeffer-van der Pol系统在随机激励下系统动力学行为的演化规律,研究了随机Bonhoeffer-van der Pol系统的稳态响应和随机分岔。借助路径积分方法、高斯闭合方法和蒙特卡洛模拟等,求解了噪声激励下Bonhoeffer-van der Pol系统的平稳解,发现系统参数诱导的随机P-分岔(唯像分岔)现象。通过与蒙特卡洛模拟结果的对比,验证了所述路径积分方法的准确性。展开更多
研究基于分数阶黏弹性材料构造的Van der pol减振系统在外部宽带噪声激励下的随机稳定性和随机分岔行为.考虑约束条件的影响,引入非平滑Zhuravlev变换,将碰撞系统转化为无碰撞的动力学系统.利用一组拟周期函数近似替换分数阶微分,通过...研究基于分数阶黏弹性材料构造的Van der pol减振系统在外部宽带噪声激励下的随机稳定性和随机分岔行为.考虑约束条件的影响,引入非平滑Zhuravlev变换,将碰撞系统转化为无碰撞的动力学系统.利用一组拟周期函数近似替换分数阶微分,通过随机平均法得到系统的It8随机微分方程,根据最大Lyapunov指数法和奇异边界理论分类讨论系统的随机稳定性,利用拟Hamilton系统随机平均法分析系统在线性It8方程下的随机分岔行为,得到D-分岔的临界条件,进一步求出与系统幅值相关的稳态概率密度函数.使用MATLAB绘制稳态概率密度曲线,直观展现系统发生的稳态变化.结果表明,当分数阶阶次和噪声强度在一定阈值内变化时,可诱导系统产生P-分岔行为.展开更多
文摘随机动力学实验验证是非线性随机动力学研究的难点问题。本文基于van der Pol电路,重点讨论多稳态系统中的随机P-分岔现象,分别探究了噪声强度、阻尼系数变化对随机动力学响应的影响,定性验证了随机P-分岔结果,即噪声强度、阻尼系数变化都能导致幅值概率密度峰的数目变化。为进一步开展多稳态系统随机动力学实验研究奠定较好的基础。
文摘为深入了解Bonhoeffer-van der Pol系统在随机激励下系统动力学行为的演化规律,研究了随机Bonhoeffer-van der Pol系统的稳态响应和随机分岔。借助路径积分方法、高斯闭合方法和蒙特卡洛模拟等,求解了噪声激励下Bonhoeffer-van der Pol系统的平稳解,发现系统参数诱导的随机P-分岔(唯像分岔)现象。通过与蒙特卡洛模拟结果的对比,验证了所述路径积分方法的准确性。
文摘研究基于分数阶黏弹性材料构造的Van der pol减振系统在外部宽带噪声激励下的随机稳定性和随机分岔行为.考虑约束条件的影响,引入非平滑Zhuravlev变换,将碰撞系统转化为无碰撞的动力学系统.利用一组拟周期函数近似替换分数阶微分,通过随机平均法得到系统的It8随机微分方程,根据最大Lyapunov指数法和奇异边界理论分类讨论系统的随机稳定性,利用拟Hamilton系统随机平均法分析系统在线性It8方程下的随机分岔行为,得到D-分岔的临界条件,进一步求出与系统幅值相关的稳态概率密度函数.使用MATLAB绘制稳态概率密度曲线,直观展现系统发生的稳态变化.结果表明,当分数阶阶次和噪声强度在一定阈值内变化时,可诱导系统产生P-分岔行为.