针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。...针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。展开更多
在月面探测过程中,针对月表多不规则地形障碍物(月表陨石凹坑、坡、月岩等)会影响巡视器移动性能以及地面观测者缺少直观的三维的月表环境信息,影响最终决策的问题。文章采用深度(RGB-D)相机获取原始数据,基于三维点云数据进行滤波消噪...在月面探测过程中,针对月表多不规则地形障碍物(月表陨石凹坑、坡、月岩等)会影响巡视器移动性能以及地面观测者缺少直观的三维的月表环境信息,影响最终决策的问题。文章采用深度(RGB-D)相机获取原始数据,基于三维点云数据进行滤波消噪等处理;再结合机器人越障能力极限与改进的随机采样一致性(Random Sample Consensus,RANSAC)算法,获取其自适应基准平面作为可通行区域;最后使用密度聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)提取局部地形障碍物信息,结合基准面进行快速三维场景重建,为地面观测提供直观快速的三维巡视器周围环境模型,并通过模拟月面地形环境试验进行验证。试验结果表明,本文所使用的算法可以有效地获取地形障碍物的空间坐标信息,并进行快速场景重建,大幅度地提高时间效率。可为月面探测任务中,巡视器自主避障以及为地面观测者提供三维视角等提供参考。展开更多
文摘针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief,ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus,RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。
文摘在月面探测过程中,针对月表多不规则地形障碍物(月表陨石凹坑、坡、月岩等)会影响巡视器移动性能以及地面观测者缺少直观的三维的月表环境信息,影响最终决策的问题。文章采用深度(RGB-D)相机获取原始数据,基于三维点云数据进行滤波消噪等处理;再结合机器人越障能力极限与改进的随机采样一致性(Random Sample Consensus,RANSAC)算法,获取其自适应基准平面作为可通行区域;最后使用密度聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)提取局部地形障碍物信息,结合基准面进行快速三维场景重建,为地面观测提供直观快速的三维巡视器周围环境模型,并通过模拟月面地形环境试验进行验证。试验结果表明,本文所使用的算法可以有效地获取地形障碍物的空间坐标信息,并进行快速场景重建,大幅度地提高时间效率。可为月面探测任务中,巡视器自主避障以及为地面观测者提供三维视角等提供参考。