叶轮结构由于工作环境恶劣,在设计生命周期中经常发生振动失效。为了更有效地分析叶轮振动的时变可靠性,研究了叶轮振动随机过程离散的时变可靠度分析方法(time-variant reliability analysis method based on stochastic process discr...叶轮结构由于工作环境恶劣,在设计生命周期中经常发生振动失效。为了更有效地分析叶轮振动的时变可靠性,研究了叶轮振动随机过程离散的时变可靠度分析方法(time-variant reliability analysis method based on stochastic process discretization for blade vibration, BV-TRPD)。首先,通过振动试验和有限元模拟,建立了叶轮的振动分析模型。考虑到叶轮结构尺寸、材料参数和载荷的不确定性,采用响应面法建立了叶轮振动极限状态方程。利用非线性指数函数、随机模型参数和参数相关的高斯随机过程建立了叶轮振动的时变可靠性分析模型。其次,在跨度率等时变可靠性分析技术的基础上,将时变可靠性转化为多个时不变系统,并在时间上离散随机过程。对于隐式极限状态方程的振动有限元问题,通过采样建立了输入参数与响应极值之间的响应面函数。考虑到设计、工艺、载荷和运行环境的不确定性,研究了影响叶轮振动时变可靠性的关键参数。考虑到成本,提出了提高叶轮振动全寿命可靠性的过程控制参数,以指导实际工程应用。展开更多
The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passe...The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.展开更多
文摘叶轮结构由于工作环境恶劣,在设计生命周期中经常发生振动失效。为了更有效地分析叶轮振动的时变可靠性,研究了叶轮振动随机过程离散的时变可靠度分析方法(time-variant reliability analysis method based on stochastic process discretization for blade vibration, BV-TRPD)。首先,通过振动试验和有限元模拟,建立了叶轮的振动分析模型。考虑到叶轮结构尺寸、材料参数和载荷的不确定性,采用响应面法建立了叶轮振动极限状态方程。利用非线性指数函数、随机模型参数和参数相关的高斯随机过程建立了叶轮振动的时变可靠性分析模型。其次,在跨度率等时变可靠性分析技术的基础上,将时变可靠性转化为多个时不变系统,并在时间上离散随机过程。对于隐式极限状态方程的振动有限元问题,通过采样建立了输入参数与响应极值之间的响应面函数。考虑到设计、工艺、载荷和运行环境的不确定性,研究了影响叶轮振动时变可靠性的关键参数。考虑到成本,提出了提高叶轮振动全寿命可靠性的过程控制参数,以指导实际工程应用。
基金Project(2011BAG01B01) supported by the Major State Basic Research and Development Program of ChinaProject(RCS2012ZZ002) supported by the State Key Lab of Rail Traffic Control and Safety,China
文摘The remain passenger problem at subway station platform was defined initially,and the period variation of remain passenger queues at platform was investigated through arriving and boarding analyses.Taking remain passenger queues at platform as dynamic stochastic process,a new probabilistic queuing method was developed based on probabilistic theory and discrete time Markov chain theory.This model can calculate remain passenger queues while considering different directions.Considering the stable or variable train arriving period and different platform crossing types,a series of model deformation research was carried out.The probabilistic approach allows to capture the cyclic behavior of queues,measures the uncertainty of a queue state prediction by computing the evolution of its probability in time,and gives any temporal distribution of the arrivals.Compared with the actual data,the deviation of experimental results is less than 20%,which shows the efficiency of probabilistic approach clearly.