期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于随机跳跃蝠鲼算法优化的电影信息数据聚类
1
作者 黄鹤 李潇磊 +2 位作者 王珺 王会峰 茹锋 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期856-867,共12页
针对传统K均值聚类(K-Means Clustering,KMC)算法在对电影信息数据聚类的过程中,初始聚类中心选取随机性较大、聚类结果不稳定且算法容易陷入局部最优、影响迭代精度等不足,提出一种基于随机跳跃式翻滚觅食蝠鲼优化的K均值联合迭代聚类... 针对传统K均值聚类(K-Means Clustering,KMC)算法在对电影信息数据聚类的过程中,初始聚类中心选取随机性较大、聚类结果不稳定且算法容易陷入局部最优、影响迭代精度等不足,提出一种基于随机跳跃式翻滚觅食蝠鲼优化的K均值联合迭代聚类算法(MRRJRFO-KMC),实现对电影信息数据的聚类.首先,提出一种均值最大最小距离积法来初始化聚类中心,改善聚类中心选取的随机性,避免随机初始化对聚类结果造成的不稳定性.其次,在迭代的过程中加入蝠鲼觅食优化算法,并对蝠鲼觅食优化算法中螺旋觅食和翻滚觅食进行改进,提出一种随机跳跃式翻滚觅食蝠鲼优化的策略,解决了蝠鲼觅食优化算法易陷入局部最优的问题.将随机跳跃式翻滚觅食蝠鲼优化算法加入KMC算法,对KMC算法迭代过程中的聚类中心进行优化,提高了聚类精度.在Iris,Aggregation,Ecoli和Seeds国际标准数据集上对MRRJRFO-KMC算法、MRFO-KMC算法、KMC算法、K-Means++算法、模糊C均值(Fuzzy C-Means,FCM)聚类算法进行比较测试,实验结果表明,MRRJRFO-KMC算法和其他算法相比,准确性和收敛速度都有所提升.在电影信息数据处理过程中,该算法能够根据所给的信息进行有效的聚类,应用价值明显. 展开更多
关键词 蝠鲼觅食优化算法 K均值聚类 均值最大最小距离积法 随机跳跃式翻滚 电影信息数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部