电动汽车和可再生能源发电的快速发展为电力系统的安全和经济运行带来了新的挑战。在此背景下,构建了能够计及可入网电动汽车(plug-inelectric vehicle,PEV)和风电机组的不确定性的随机经济调度模型。首先采用随机仿真方法研究PEV的充...电动汽车和可再生能源发电的快速发展为电力系统的安全和经济运行带来了新的挑战。在此背景下,构建了能够计及可入网电动汽车(plug-inelectric vehicle,PEV)和风电机组的不确定性的随机经济调度模型。首先采用随机仿真方法研究PEV的充电与放电功率的概率分布。之后,在假设风速服从Rayleigh分布的前提下,导出了风电机组出力概率分布的表达式。通过理论分析得到了风电机组和电动汽车接入网络(vehicle to grid,V2G)的电源出力的数学期望的解析表达式,并在此基础上,构建了电力系统随机经济调度模型。最后,以IEEE118节点系统为例说明了所提出的随机经济调度模型的基本特征。展开更多
A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decompose...A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.展开更多
文摘电动汽车和可再生能源发电的快速发展为电力系统的安全和经济运行带来了新的挑战。在此背景下,构建了能够计及可入网电动汽车(plug-inelectric vehicle,PEV)和风电机组的不确定性的随机经济调度模型。首先采用随机仿真方法研究PEV的充电与放电功率的概率分布。之后,在假设风速服从Rayleigh分布的前提下,导出了风电机组出力概率分布的表达式。通过理论分析得到了风电机组和电动汽车接入网络(vehicle to grid,V2G)的电源出力的数学期望的解析表达式,并在此基础上,构建了电力系统随机经济调度模型。最后,以IEEE118节点系统为例说明了所提出的随机经济调度模型的基本特征。
基金Projects(51007047,51077087)supported by the National Natural Science Foundation of ChinaProject(2013CB228205)supported by the National Key Basic Research Program of China+1 种基金Project(20100131120039)supported by Higher Learning Doctor Discipline End Scientific Research Fund of the Ministry of Education Institution,ChinaProject(ZR2010EQ035)supported by the Natural Science Foundation of Shandong Province,China
文摘A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.