期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of optimized random forest regressors in predicting maximum principal stress of aseismic tunnel lining
1
作者 MEI Xian-cheng DING Chang-dong +4 位作者 ZHANG Jia-min LI Chuan-qi CUI Zhen SHENG Qian CHEN Jian 《Journal of Central South University》 CSCD 2024年第11期3900-3913,共14页
Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with dam... Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with damping layer.However,the traditional numerical methods suffer from the complex modelling and time-consuming problems.Therefore,a prediction model named the random forest regressor(RFR)is proposed based on 240 numerical simulation results of the mechanical response of tunnel lining.In addition,circle mapping(CM)is used to improve Archimedes optimization algorithm(AOA),reptile search algorithm(RSA),and Chernobyl disaster optimizer(CDO)to further improve the predictive performance of the RFR model.The performance evaluation results show that the CMRSA-RFR is the best prediction model.The damping layer thickness is the most important feature for predicting the maximum principal stress of tunnel lining containing damping layer.This study verifies the feasibility of combining numerical simulation with machine learning technology,and provides a new solution for predicting the mechanical response of aseismic tunnel with damping layer. 展开更多
关键词 maximum principal stress aseismic tunnel lining random forest regressor machine learning
在线阅读 下载PDF
多层次MSER自然场景文本检测 被引量:11
2
作者 唐有宝 卜巍 邬向前 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1134-1140,共7页
提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,... 提出一种新的基于多层次最大稳定极值区域(MSER)的自然场景文本检测方法,其由候选区域的提取和文本检测组成.在候选区域提取过程中,采用多层次MSER区域提取方法:通过对原始图像进行多个颜色空间变换和多尺度放缩得到多个变换后的图像,采用多个阈值对其进行MSER区域检测,并将检测到的区域作为候选区域用于文本检测.检测过程中,对候选区域提取手工设计的底层特征和基于卷积神经网络(CNN)的深层特征,训练一个随机森林回归器对特征进行分类得到字符区域,再将其合并成单词区域,并进行相似的特征提取和分类,从而得到最终的文本检测结果.使用2个标准的数据库(ICDAR2011和ICDAR2013)对提出的方法进行性能评价,F指标在ICDAR2011和ICDAR2013上均为0.79,表明了所提出的自然场景文本检测方法的有效性. 展开更多
关键词 自然场景文本检测 多层次最大稳定极值区域(MSER) 卷积神经网络(CNN) 随机森林回归器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部