期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于振动特征优选和极限学习机的滚动轴承故障诊断
被引量:
5
1
作者
王素华
徐小健
+1 位作者
于飞
樊清川
《深圳大学学报(理工版)》
CAS
CSCD
北大核心
2023年第4期504-512,共9页
为解决滚动轴承故障诊断存在的振动信号故障信息提取模糊,诊断精度较低的问题,提出一种将改进的固有时间尺度分解(improved intrinsic time-scale decomposition,IITD)算法与极限学习机(extreme learning machine,ELM)相结合的故障诊断...
为解决滚动轴承故障诊断存在的振动信号故障信息提取模糊,诊断精度较低的问题,提出一种将改进的固有时间尺度分解(improved intrinsic time-scale decomposition,IITD)算法与极限学习机(extreme learning machine,ELM)相结合的故障诊断模型,记为COA-ELM.利用IITD算法分解振动信号获取其固有旋转(proper rotation,PR)分量,并基于多尺度熵理论计算各PR分量的多尺度熵值重构特征向量.利用郊狼优化算法(coyote optimization algorithm,COA)对ELM网络的输入权值和隐藏层阈值进行寻优.采用最优ELM网络对7种滚动轴承状态进行诊断,结果表明,本研究所建COA-ELM模型的滚动轴承故障诊断精度能够达到96.4%,相较于传统的故障诊断模型性能有着显著的提升.
展开更多
关键词
计算机神经网络
随机振动力学
故障诊断
滚动轴承
改进的固有时间尺度分解
郊狼优化
极限学习机
在线阅读
下载PDF
职称材料
题名
基于振动特征优选和极限学习机的滚动轴承故障诊断
被引量:
5
1
作者
王素华
徐小健
于飞
樊清川
机构
武昌首义学院机电与自动化学院
海军工程大学电气工程学院
出处
《深圳大学学报(理工版)》
CAS
CSCD
北大核心
2023年第4期504-512,共9页
基金
国家自然科学基金资助项目(51877212)
湖北省教育厅科研计划资助项目(B2021356)。
文摘
为解决滚动轴承故障诊断存在的振动信号故障信息提取模糊,诊断精度较低的问题,提出一种将改进的固有时间尺度分解(improved intrinsic time-scale decomposition,IITD)算法与极限学习机(extreme learning machine,ELM)相结合的故障诊断模型,记为COA-ELM.利用IITD算法分解振动信号获取其固有旋转(proper rotation,PR)分量,并基于多尺度熵理论计算各PR分量的多尺度熵值重构特征向量.利用郊狼优化算法(coyote optimization algorithm,COA)对ELM网络的输入权值和隐藏层阈值进行寻优.采用最优ELM网络对7种滚动轴承状态进行诊断,结果表明,本研究所建COA-ELM模型的滚动轴承故障诊断精度能够达到96.4%,相较于传统的故障诊断模型性能有着显著的提升.
关键词
计算机神经网络
随机振动力学
故障诊断
滚动轴承
改进的固有时间尺度分解
郊狼优化
极限学习机
Keywords
computer neural network
stochastic vibration mechanics
fault diagnosis
rolling bearing
improved intrinsic time-scale decomposition
coyote optimization
extreme learning machine
分类号
TH133.33 [机械工程—机械制造及自动化]
TP277 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于振动特征优选和极限学习机的滚动轴承故障诊断
王素华
徐小健
于飞
樊清川
《深圳大学学报(理工版)》
CAS
CSCD
北大核心
2023
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部