介绍了基于半条件随机域(semi-Markov conditional random fields,简称semi-CRFs)模型的百科全书文本段落划分方法.为了克服单纯的HMM模型和CRF模型的段落类型重复问题,以经过整理的HMM模型状态的后验分布为基本依据,使用了基于词汇语...介绍了基于半条件随机域(semi-Markov conditional random fields,简称semi-CRFs)模型的百科全书文本段落划分方法.为了克服单纯的HMM模型和CRF模型的段落类型重复问题,以经过整理的HMM模型状态的后验分布为基本依据,使用了基于词汇语义本体知识库的段落开始特征以及针对特定段落类型的提示性特征来进一步适应目标文本的特点.实验结果表明,该划分方法可以综合利用各种不同类型的信息,比较适合百科全书文本的段落结构,可以取得比单纯的HMM模型和CRF模型更好的性能.展开更多
当前中文人名识别的研究主要针对中国人名,而对日本人名及音译人名的专门研究相对较少,识别效果也亟待提高。提出利用CRRM方法进行中、日及音译人名同步识别。该方法基于CRF(Conditional Random Fields)并结合了上下文规则及人名可信度...当前中文人名识别的研究主要针对中国人名,而对日本人名及音译人名的专门研究相对较少,识别效果也亟待提高。提出利用CRRM方法进行中、日及音译人名同步识别。该方法基于CRF(Conditional Random Fields)并结合了上下文规则及人名可信度模型。此外,利用局部统计算法对边界识别错误的人名进行修正,并利用扩散操作召回未被识别的人名。实验结果表明,中、日、音译人名识别的F值均高于90%,提出的方法可以取得较好的识别效果。展开更多
文摘介绍了基于半条件随机域(semi-Markov conditional random fields,简称semi-CRFs)模型的百科全书文本段落划分方法.为了克服单纯的HMM模型和CRF模型的段落类型重复问题,以经过整理的HMM模型状态的后验分布为基本依据,使用了基于词汇语义本体知识库的段落开始特征以及针对特定段落类型的提示性特征来进一步适应目标文本的特点.实验结果表明,该划分方法可以综合利用各种不同类型的信息,比较适合百科全书文本的段落结构,可以取得比单纯的HMM模型和CRF模型更好的性能.
文摘当前中文人名识别的研究主要针对中国人名,而对日本人名及音译人名的专门研究相对较少,识别效果也亟待提高。提出利用CRRM方法进行中、日及音译人名同步识别。该方法基于CRF(Conditional Random Fields)并结合了上下文规则及人名可信度模型。此外,利用局部统计算法对边界识别错误的人名进行修正,并利用扩散操作召回未被识别的人名。实验结果表明,中、日、音译人名识别的F值均高于90%,提出的方法可以取得较好的识别效果。