期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
特征扩展的随机向量函数链神经网络
1
作者 龙茂森 王士同 《软件学报》 EI CSCD 北大核心 2024年第6期2903-2922,共20页
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的... 基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度,从而对其可解释性造成了不利影响.对此,提出一种兼顾分类性能和可解释性的模糊神经网络,将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN).在该网络中,一个以原始数据为输入的RVFLNN被作为主体结构,BL-DFIS则用作性能补充,这意味着FA-RVFLNN包含具有性能增强作用的直接链接.由于主体结构的增强节点使用Sigmoid激活函数,因此,其推理过程可借助一种模糊逻辑算子(I-OR)来解释.而且,具有明确含义的原始输入数据也有助于解释主体结构的推理规则.在直接链接的支撑下,FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息.实验表明:FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题,也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右),在泛化性能和网络规模上仍具有竞争力. 展开更多
关键词 宽度学习系统 模糊推理系统 特征扩展 随机向量函数链神经网络(rvflNN) Sigmoid激活函数 可解释
在线阅读 下载PDF
快速多视角特权协同随机向量函数连接网络 被引量:1
2
作者 吴天宇 王士同 《计算机科学与探索》 CSCD 北大核心 2022年第10期2320-2329,共10页
现实情况中通常会针对同一对象从不同途径或层面获得特征数据,称这样获得的数据为多视角数据。对于多视角数据的挖掘利用具有研究价值,与传统的单视角学习相比表现出一定优势。多视角学习(MVL)中一个重要的问题是如何在满足视角间互补... 现实情况中通常会针对同一对象从不同途径或层面获得特征数据,称这样获得的数据为多视角数据。对于多视角数据的挖掘利用具有研究价值,与传统的单视角学习相比表现出一定优势。多视角学习(MVL)中一个重要的问题是如何在满足视角间互补情况下同时保持视角之间一致性。为解决上述问题,基于多视角学习和特权信息学习(LUPI)概念,以随机向量函数连接网络(RVFL)为基础,提出了一种快速多视角特权协同随机向量函数连接网络(FMPRVFL)来有效地解决多视角分类任务。该方法的基本思想是在平均情况下相互利用冗余视角的附加信息作为特权信息监督当前视角的分类。在此基础上设计的FMPRVFL的目标函数可以利用解析解对目标函数进行优化,从而使FMPRVFL训练速度更快。理论分析表明,与经典的多视角学习方法相比,FMPRVFL可以提供额外的泛化能力。在64个数据集上的实验结果表明,FMPRVFL在平均测试精度和运行时间上都优于比较方法。 展开更多
关键词 多视角学习(MVL) 特权信息 随机向量函数连接网络(rvfl)
在线阅读 下载PDF
分布式子空间局部链接随机向量函数链接网络
3
作者 于万国 袁镇濠 +1 位作者 陈佳琪 何玉林 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2022年第6期675-683,共9页
为解决随机向量函数链接(random vector functional link,RVFL)网络处理大规模数据分类时表现出的泛化能力差和计算复杂度高的问题,基于Spark框架设计与实现一种分布式子空间局部链接的RVFL(distributed RVFL with subspace-based local... 为解决随机向量函数链接(random vector functional link,RVFL)网络处理大规模数据分类时表现出的泛化能力差和计算复杂度高的问题,基于Spark框架设计与实现一种分布式子空间局部链接的RVFL(distributed RVFL with subspace-based local connections,DRVFL-SLC)网络.利用弹性分布式数据集(resilient distributed dataset,RDD)的分区并行性,对存于Hadoop分布式文件系统(Hadoop distributed file system,HDFS)的大规模数据集进行随机样本划分(random sample partition,RSP)操作,保证每个RSP数据块对应RDD的1个分区.其中,RSP数据块是在给定的显著性水平下与大数据保持概率分布一致性的数据子集.在分布式环境下对包含多个分区的RDD调用mapPartitions转换算子并行高效地训练对应的最优RVFL-SLC网络.利用collect执行算子将RDD每个分区对应的最优RVFL-SLC网络进行高效率地渐近融合获得DRVFLSLC网络以实现对大数据分类问题的近似求解.在部署了6个计算节点的Spark集群上,基于8个百万条记录的大规模数据集对DRVFL-SLC网络的可行性和有效性进行了验证.结果表明,DRVFL-SLC网络拥有很好的加速比、可扩展性以及规模增长性,同时能够获得比在单机上利用全量数据训练的RVFL-SLC网络更好的泛化表现. 展开更多
关键词 人工智能 随机向量函数链接网络 子空间局部链接 随机样本划分 HADOOP分布式文件系统
在线阅读 下载PDF
核化的多视角特权协同随机矢量功能链接网络及其增量学习方法
4
作者 吴天宇 王士同 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期275-285,共11页
在许多实际应用场景中,可以从不同层次、不同角度获取相同对象的特征数据,如何有效地利用获取的多视角数据是一个值得研究的问题.和传统的单视角学习相比,多视角学习在多源数据的应用中显示了一定的优势.多角度学习(Multi-View Learning... 在许多实际应用场景中,可以从不同层次、不同角度获取相同对象的特征数据,如何有效地利用获取的多视角数据是一个值得研究的问题.和传统的单视角学习相比,多视角学习在多源数据的应用中显示了一定的优势.多角度学习(Multi-View Learning,MVL)面临的一个重要问题是在满足不同视角互补性的前提下如何保持视角之间的一致性.针对以上问题,提出一种新的多视角特权协同核化随机向量功能链接网络(KMPRVFL)来有效地解决多视角分类问题,其基本思想是将冗余视角的额外信息与平均视角上的特权信息相结合来监督当前视角的分类任务,将多视角数据用核化后加权线性组合成综合第二视角.同时,还设计了一种增量学习方法,可以有效地减少计算量.在真实数据集上的实验结果表明,和传统的多视角学习方法相比,KMPRVFL的能力更强,其平均测试精度要优于对比算法. 展开更多
关键词 多视角学习 特权信息 随机向量函数链接网络 增量学习
在线阅读 下载PDF
基于自组织特征映射神经网络的数字模式识别 被引量:3
5
作者 许新征 曾文华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期333-336,共4页
在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛... 在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛两个阶段,并分别采用不同的学习率和邻域函数.采用改进后的SOFM算法对输入样本进行自组织聚类,再利用学习矢量量化(LVQ)算法解决样本分类中的交迭问题,提高了分类精度.仿真实验结果表明,该网络能够识别常用的数字(0~9)和英文字母,特别是在有噪声污染的情况下,可以获得较好的效果. 展开更多
关键词 自组织特征映射神经网络 数字模式识别 SOFM算法 学习矢量量化 自组织聚类 随机选择 改进算法 收敛速度 学习算法 连接权值 经验确定 高斯函数 样本分类 噪声污染 英文字母 仿真实验 分类精度 学习率 再利用 邻域
在线阅读 下载PDF
磨机负荷参数快速去相关神经网络集成模型 被引量:5
6
作者 赵立杰 李彬 +2 位作者 汪滢 陈斌 王魏 《控制工程》 CSCD 北大核心 2017年第9期1952-1957,共6页
磨机负荷是与磨矿过程生产效率、产品质量、能源消耗密切相关的重要指标。由于封闭旋转运行的工作特点,球磨机负荷参数难以直接有效测量。针对集成模型成员间的相关性相对较高的问题,提出一种基于快速去相关神经网络集成的球磨机负荷参... 磨机负荷是与磨矿过程生产效率、产品质量、能源消耗密切相关的重要指标。由于封闭旋转运行的工作特点,球磨机负荷参数难以直接有效测量。针对集成模型成员间的相关性相对较高的问题,提出一种基于快速去相关神经网络集成的球磨机负荷参数建模方法。该方法采用随机向量函数连接(Random Vector Functional-Link,RVFL)网络生成磨机负荷参数集成模型个体,随机分配RVFL个体模型隐含层参数,使用负相关(Negative Correlation Learning,NCL)算法,将集成模型转化为线性方程求解集成模型参数。球磨机运行试验数据的仿真实验结果验证了所提球磨机负荷模型的有效性。 展开更多
关键词 磨机负荷 负相关学习 快速去相关神经网络集成 随机向量函数连接网络
在线阅读 下载PDF
基于一种NW-FLNN神经网络的短期电价预测 被引量:7
7
作者 杨春霞 王耀力 +1 位作者 王力波 常青 《电测与仪表》 北大核心 2019年第10期82-86,98,共6页
针对传统神经网络收敛速度慢、容易陷入局部极值的问题,文中提出一种改进型小波神经网络以实现网络全局最优化。首先,将小波神经网络与随机矢量函数连接型网络相融合构建一种新型小波链神经网络( NW-FLNN);其次,以小波基函数作为NW-FLN... 针对传统神经网络收敛速度慢、容易陷入局部极值的问题,文中提出一种改进型小波神经网络以实现网络全局最优化。首先,将小波神经网络与随机矢量函数连接型网络相融合构建一种新型小波链神经网络( NW-FLNN);其次,以小波基函数作为NW-FLNN的隐含层的传递函数,并利用梯度修正法训练该模型各参数;最后,选用澳大利亚新南威尔士州电价数据作为实验数据集,分别对 NW-FLNN神经网络、逆传播 B P神经网络与小波神经网络进行预测性能比较。实验结果表明:该新型网络预测模型较B P神经网络与小波神经网络性能更优,可明显减少网络迭代次数与隐层神经元数目,且平均百分比误差最大降低至0. 0317,满足实时性要求。 展开更多
关键词 小波神经网络 随机矢量函数连接网络 新型小波链神经网络 电价预测
在线阅读 下载PDF
基于改进的U-Net肺结节分割方法研究 被引量:8
8
作者 苗语 丰振航 +2 位作者 杨华民 蒋振刚 师为礼 《计算机应用与软件》 北大核心 2021年第12期213-219,共7页
由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复... 由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复用性。通过U-Net网络与卷积条件随机场(ConvCRF)的端到端结合训练来增强边缘特征,解决了边界模糊的问题。提出一种改进的focal loss损失函数,该函数提高了结节所占的权重,解决了正负样本不平衡的问题。在LUNA16数据集中作对比实验验证了模型的性能,分割精准度达到0.9374,敏感度为0.941,该结果证明了改进模型在肺结节分割中更优。 展开更多
关键词 肺结节分割 U型卷积网络 密集连接 损失函数 卷积条件随机
在线阅读 下载PDF
基于整体辨识策略的非线性自适应控制方法 被引量:2
9
作者 张政煊 杨翊卓 +2 位作者 代伟 周平 杨春雨 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第11期2039-2048,共10页
针对一类离散时间下的未知动态非线性系统,为解决传统自适应控制方法在交替辨识非线性系统时由于辨识精度低而导致的控制性能差的问题,本文提出了一种基于整体辨识策略的未建模动态补偿的自适应控制方法.利用随机向量函数链接(RVFL)网... 针对一类离散时间下的未知动态非线性系统,为解决传统自适应控制方法在交替辨识非线性系统时由于辨识精度低而导致的控制性能差的问题,本文提出了一种基于整体辨识策略的未建模动态补偿的自适应控制方法.利用随机向量函数链接(RVFL)网络的直链与增强结构特性挖掘其与低阶线性模型和高阶未建模动态项的等价对应关系,并融入权值偏差惩罚项,设计了网络模型参数在线更新算法辨识非线性系统参数.根据在线辨识的线性模型参数和未建模动态估计量,采用一步超前最优控制策略设计线性控制器和未建模动态补偿器.数值仿真表明,所提方法优于交替辨识下的非线性自适应控制方法,并通过工业应用的仿真研究验证所提方法在工业上的可用性.最后,对本文控制方法在实际应用中的潜在问题及理论受限条件的放松进行分析和展望. 展开更多
关键词 随机向量函数链接网络 非线性 自适应控制 未建模动态补偿 输出权值偏差惩罚
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部