期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
多策略融合改进的自适应蜉蝣算法 被引量:3
1
作者 蒋宇飞 许贤泽 +1 位作者 徐逢秋 高波 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1416-1426,共11页
为改进蜉蝣算法全局搜索能力较差、种群多样性较小和自适应能力弱等问题,提出一种多策略融合改进的自适应蜉蝣算法(MIMA)。采用Sin混沌映射初始化蜉蝣种群,使种群能够均匀分布在解空间中,提高初始种群质量,增强全局搜索能力;引入Tent混... 为改进蜉蝣算法全局搜索能力较差、种群多样性较小和自适应能力弱等问题,提出一种多策略融合改进的自适应蜉蝣算法(MIMA)。采用Sin混沌映射初始化蜉蝣种群,使种群能够均匀分布在解空间中,提高初始种群质量,增强全局搜索能力;引入Tent混沌映射和高斯变异对种群个体进行调节,增加种群多样性的同时调控种群密度,增强局部最优逃逸能力;引入不完全伽马函数,重构自适应动态调节的重力系数,建立全局搜索和局部开发能力之间更好的平衡,进而提升算法收敛精度,有利于提高全局搜索能力;采用随机反向学习(ROBL)策略,增强全局搜索能力,提高收敛速度并增强稳定性。利用经典测试函数集进行算法对比,并利用Wilcoxon秩和检验分析算法的优化效果,证明改进的有效性和可靠性。实验结果表明:所提算法与其他算法相比,寻优精度、收敛速度、稳定性都取得了较大提升。 展开更多
关键词 蜉蝣算法 混沌映射 高斯变异 自适应动态调节 随机反向学习
在线阅读 下载PDF
基于对称映射搜索策略的自适应金鹰算法及应用 被引量:1
2
作者 周徐虎 李世港 +1 位作者 罗仪 张伟 《电子科技》 2024年第8期8-16,25,共10页
金鹰优化算法(Golden Eagle Optimizer,GEO)是一种基于种群的元启发式算法,其模拟了金鹰的合作狩猎行为。针对GEO算法中存在的求解精度差和陷入局部最优等问题,文中提出了一种改进MERGEO(Mapped Elitist Reverse GEO)算法。在原算法基... 金鹰优化算法(Golden Eagle Optimizer,GEO)是一种基于种群的元启发式算法,其模拟了金鹰的合作狩猎行为。针对GEO算法中存在的求解精度差和陷入局部最优等问题,文中提出了一种改进MERGEO(Mapped Elitist Reverse GEO)算法。在原算法基础上采用对称映射搜索策略、自适应精英策略和随机反向学习机制这3种方法平衡了算法的探索和开发阶段,获得了规避局部最优能力和较好的优化精度。在10个基准测试函数上对该算法进行独立策略有效性分析、可扩展性分析以及同其他算法的优化性能比较分析。实验结果表明,改进后的MERGEO算法具有较强的竞争力和良好的优化能力。将改进后的算法用于无线传感器网络的覆盖优化问题和压力容器设计问题研究,验证了其实际应用价值。 展开更多
关键词 金鹰优化算法 元启发式算法 对称映射搜索策略 自适应精英策略 随机反向学习 可扩展性分析 无线传感器网络的覆盖优化 压力容器设计
在线阅读 下载PDF
多策略融合改进的飞蛾火焰优化算法
3
作者 何加文 许贤泽 高波 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2862-2871,共10页
针对飞蛾火焰优化算法容易出现局部最优解、接近全局最优时开发能力不足等问题,提出一种多策略融合改进的飞蛾火焰优化(RGMFO)算法。在每次迭代开始时,使用随机反向学习策略获得高质量飞蛾种群;利用高斯变异将较差的火焰个体替换为优秀... 针对飞蛾火焰优化算法容易出现局部最优解、接近全局最优时开发能力不足等问题,提出一种多策略融合改进的飞蛾火焰优化(RGMFO)算法。在每次迭代开始时,使用随机反向学习策略获得高质量飞蛾种群;利用高斯变异将较差的火焰个体替换为优秀个体;使用阿基米德螺线、权重因子和围绕最优火焰飞行3种方式改进飞蛾更新机制。为验证所提算法的有效性,与11个不同类型的基准函数进行寻优测试,基准函数实验结果与秩和检验表明:相较于其他优化算法及其他MFO改进算法,所提算法具有更好的全局搜索能力与更高的寻优精度。将所提算法应用于减速器设计和槽形舱壁设计的实际工程场景中,以进一步验证算法的实用性与可行性。 展开更多
关键词 飞蛾火焰优化算法 多策略融合 随机反向学习 高斯变异 智能优化
在线阅读 下载PDF
基于多项优化哈里斯鹰算法的同步电机参数辨识
4
作者 廖正霖 沈艳霞 《计量学报》 CSCD 北大核心 2024年第12期1868-1875,共8页
针对永磁同步电机(PMSM)参数辨识领域的传统方法存在难以同时辨识多参数、辨识精度不够高等问题,提出一种参数辨识算法。该算法中采用了哈里斯鹰优化算法。为了提高参数辨识的准确度和稳定性,从3个方面对哈里斯鹰算法进行改进:首先,从... 针对永磁同步电机(PMSM)参数辨识领域的传统方法存在难以同时辨识多参数、辨识精度不够高等问题,提出一种参数辨识算法。该算法中采用了哈里斯鹰优化算法。为了提高参数辨识的准确度和稳定性,从3个方面对哈里斯鹰算法进行改进:首先,从种群的初始化方向引入Logistic混沌映射来初始化鹰群的位置,增加种群的多样性,加快辨识算法的收敛速度;其次,从鹰群位置更新的角度考虑,通过随机反向学习策略优化鹰群中位置最差个体,使算法的模糊性和随机性提高,增强全局搜索性能,使辨识结果更精确;最后,为了防止过早收敛,将目前的最佳个体位置保留进入下一次迭代,改善传统哈里斯鹰算法易陷入局部最优和精度下降的问题。在基于PMSM电压方程建立的数学模型基础上,将多项优化的哈里斯鹰算法(MIHHO)和标准哈里斯鹰算法(HHO)、粒子群算法(PSO)以及麻雀搜索算法(SSA)进行测试。经过仿真和实验证明,MIHHO对于PMSM参数辨识具有更加优秀的稳定性、收敛速度以及更高的辨识精度。 展开更多
关键词 电学测量 永磁同步电机 哈里斯鹰算法 参数辨识 LOGISTIC混沌映射 随机反向学习策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部