期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
融合随机傅里叶特征的混合神经网络模型
1
作者 支凯茹 张凯 +1 位作者 门昌骞 王文剑 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2875-2881,共7页
深度神经网络模型作为目前最成功的学习模型之一,在模型训练时涉及大量的参数学习,特别对于较大规模的样本存在特征处理困难、模型结构复杂等问题.线性或亚线性时间复杂度的核近似算法具有计算开销小、易于扩展到大规模数据的优点.因此... 深度神经网络模型作为目前最成功的学习模型之一,在模型训练时涉及大量的参数学习,特别对于较大规模的样本存在特征处理困难、模型结构复杂等问题.线性或亚线性时间复杂度的核近似算法具有计算开销小、易于扩展到大规模数据的优点.因此,利用线性核近似算法可以进行特征处理并降低深度神经网络模型的结构复杂程度.本文提出一种基于傅里叶特征空间的混合神经网络模型优化方法,并由此构建一个混合深度神经网络模型.该模型将基于随机傅里叶特征变换的浅层网络与卷积神经网络相结合,傅里叶层进行数据特征处理与提取的同时,降低混合网络模型的结构复杂程度,优化深度神经网络模型结构.实验结果表明本文提出的模型拥有较少的参数量和较低的浮点计算量,同时模型可保持较高的测试准确率以及更快的收敛效率. 展开更多
关键词 核近似 随机傅里叶特征 模型优化 混合神经网络
在线阅读 下载PDF
随机傅里叶特征空间中高斯核支持向量机模型选择 被引量:10
2
作者 冯昌 廖士中 《计算机研究与发展》 EI CSCD 北大核心 2016年第9期1971-1978,共8页
模型选择是支持向量机(support vector machines,SVMs)学习的关键问题.标准支持向量机学习本质上是求解一个凸二次优化问题,求解的时间复杂度为数据规模的立方级,而经典的模型选择方法往往需要多次训练支持向量机,这种模型选择方法对于... 模型选择是支持向量机(support vector machines,SVMs)学习的关键问题.标准支持向量机学习本质上是求解一个凸二次优化问题,求解的时间复杂度为数据规模的立方级,而经典的模型选择方法往往需要多次训练支持向量机,这种模型选择方法对于中等规模的支持向量机学习计算代价已较高,更难以扩展到大规模支持向量机学习.基于高斯核函数的随机傅里叶特征近似,提出一种新的、高效的核支持向量机模型选择方法.首先,利用随机傅里叶特征映射,将无限维隐式特征空间嵌入到一个相对低维的显式随机特征空间,并推导在2个不同的特征空间中分别训练支持向量机所得到的模型的误差上界;然后,以模型误差上界为理论保证,提出随机特征空间中核支持向量机的模型选择方法,应用随机特征空间中的线性支持向量机来逼近核支持向量机,计算模型选择准则的近似值,从而评价所对应的核支持向量机的相对优劣;最后,在标杆数据集上验证所提出方法的可行性和高效性.实验结果表明,所提出的模型选择方法与标准交叉验证方法的测试精度基本相当,但可显著地提高核支持向量机模型选择效率. 展开更多
关键词 模型选择 支持向量机 随机傅里叶特征 高斯核 交叉验证
在线阅读 下载PDF
随机傅里叶特征相异度的故障检测算法
3
作者 张成 吕佩琛 +1 位作者 伊海迪 李元 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第7期1251-1260,共10页
针对大规模非线性动态过程故障检测问题,提出随机傅里叶特征相异度(RFF–DISSIM)的故障检测方法.首先,利用RFF对原始数据进行映射,获得特征空间中的数据集;然后,在特征空间中应用滑动窗口技术并结合相异度指标对特征空间中的数据集进行... 针对大规模非线性动态过程故障检测问题,提出随机傅里叶特征相异度(RFF–DISSIM)的故障检测方法.首先,利用RFF对原始数据进行映射,获得特征空间中的数据集;然后,在特征空间中应用滑动窗口技术并结合相异度指标对特征空间中的数据集进行过程状态监控.本文方法通过RFF快速捕获数据的非线性结构并结合相异度指标消除样本间自相关性的影响,有效地提高了过程监控性能.通过一个数值例子和连续搅拌釜反应器(CSTR)的仿真实验并与传统的核主元分析、动态主元分析等方法对比分析,仿真结果进一步证明了本文所提方法的有效性. 展开更多
关键词 随机傅里叶特征 相异度 非线性过程 动态过程 故障检测
在线阅读 下载PDF
非线性主动噪声控制的随机傅里叶特征-核滤波算法 被引量:3
4
作者 朱迎莹 赵海全 《信号处理》 CSCD 北大核心 2020年第6期984-990,共7页
传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空... 传统的线性主动噪声控制算法在噪声信号或噪声通道呈现非线性特性的情况下控制效果不佳。核-滤波最小均方误差算法(Kernel Filtered x Least Mean Square,KFxLMS)通过将输入噪声信号映射到高维再生核希尔伯特空间,再用线性方法在高维空间中进行处理。然而,随着新噪声信号的输入,KFxLMS算法递增的核函数运算需要较高的成本。为进一步改进KFxLMS算法,本文提出了随机傅里叶特征核滤波最小均方误差算法(Random Fourier Feature-Kernel Filtered x Least Mean Square,RFF-KFxLMS)。在仿真实验部分讨论了算法的参数选择,给出了算法的计算耗时,并验证了提出的RFF-KFxLMS算法在非线性噪声通道情况下,针对不同频率分量的正弦噪声都能够达到理想的性能。 展开更多
关键词 非线性主动噪声控制 核自适应滤波器 滤波最小均方误差算法 随机傅里叶特征
在线阅读 下载PDF
随机特征上一致中心调节的支持向量机
5
作者 廖士中 卢玮 《计算机工程与应用》 CSCD 2014年第17期44-48,55,共6页
支持向量机(SVM)是最为流行的分类工具,但处理大规模的数据集时,需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出一种新的并行SVM算法,RF-CCASVM,可在有限计算资源上求解大规模SVM。通过随机傅里叶映射,应用低维显... 支持向量机(SVM)是最为流行的分类工具,但处理大规模的数据集时,需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出一种新的并行SVM算法,RF-CCASVM,可在有限计算资源上求解大规模SVM。通过随机傅里叶映射,应用低维显示特征映射一致近似高斯核对应的无限维隐式特征映射,从而用线性SVM一致近似高斯核SVM。提出一致中心调节的并行化方法。具体地,将数据集划分成若干子数据集,多个进程并行地在各自的子数据集上独立训练SVM。当各个子数据集上的最优超平面即将求出时,用由各个子集上获得的一致中心解取代当前解,继续在各子集上训练直到一致中心解在各个子集上达到最优。标准数据集的对比实验验证了RF-CCASVM的正确性和有效性。 展开更多
关键词 并行支持向量机 大规模数据集 有限资源 随机傅里叶特征 一致中心调节
在线阅读 下载PDF
基于特征采样引导和集成RFELM的道路高排放源识别模型
6
作者 周汉胜 段培杰 +1 位作者 李泽瑞 周金华 《现代电子技术》 北大核心 2024年第6期124-130,共7页
机动车排放的污染气体会对环境造成严重危害,其中尾气排放超标的车辆是主要污染来源,因此实现对道路高排放源的有效识别具有重要意义。针对尾气遥测数据,提出一种基于特征采样引导和集成随机傅里叶特征极限学习机(RFELM)的道路高排放源... 机动车排放的污染气体会对环境造成严重危害,其中尾气排放超标的车辆是主要污染来源,因此实现对道路高排放源的有效识别具有重要意义。针对尾气遥测数据,提出一种基于特征采样引导和集成随机傅里叶特征极限学习机(RFELM)的道路高排放源识别模型。首先对遥测数据进行多次随机采样,构建多组训练子集;然后对每组训练子集进行多次特征采样,并训练对应的子分类器,根据组内最优子分类器的输入特征更新特征采样的概率与特征权重;最后对所有子分类器的验证分数进行排序,筛选出一定比例的RFELM组成分类器集合,采用加权投票法预测数据的标签。实验结果表明,相比于RFELM和随机森林等算法,所提模型在真实的道路遥测数据上具有更好的识别效果,还有着更强的抗噪能力。 展开更多
关键词 道路高排放源识别 遥测数据 特征采样 集成学习 随机傅里叶特征极限学习机 子分类器
在线阅读 下载PDF
一种大规模支持向量机的高效求解算法 被引量:1
7
作者 冯昌 李子达 廖士中 《计算机科学》 CSCD 北大核心 2015年第9期195-198,共4页
现有大规模支持向量机求解算法需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出了一种大规模支持向量机(SVM)的高效求解算法,以在个人PC机求解大规模SVM。它包括3个步骤:首先对大规模样本进行子采样来降低数据规模... 现有大规模支持向量机求解算法需要大量的内存资源和训练时间,通常在大集群并行环境下才能实现。提出了一种大规模支持向量机(SVM)的高效求解算法,以在个人PC机求解大规模SVM。它包括3个步骤:首先对大规模样本进行子采样来降低数据规模;然后应用随机傅里叶映射显式地构造随机特征空间,使得可在该随机特征空间中应用线性SVM来一致逼近高斯核SVM;最后给出线性SVM在多核环境下的并行实现方法以进一步提高求解效率。标准数据集的对比实验验证了该求解算法的可行性与高效性。 展开更多
关键词 大规模支持向量机 子采样 随机傅里叶特征 并行线性支持向量机
在线阅读 下载PDF
并行效率敏感的大规模SVM数据分块数选择 被引量:1
8
作者 张闯 廖士中 《数据采集与处理》 CSCD 北大核心 2018年第6期1068-1076,共9页
数据分块数的选择是并行/分布式机器学习模型选择的基本问题之一,直接影响着机器学习算法的泛化性和运行效率。现有并行/分布式机器学习方法往往根据经验或处理器个数来选择数据分块数,没有明确的数据分块数选择准则。提出一个并行效率... 数据分块数的选择是并行/分布式机器学习模型选择的基本问题之一,直接影响着机器学习算法的泛化性和运行效率。现有并行/分布式机器学习方法往往根据经验或处理器个数来选择数据分块数,没有明确的数据分块数选择准则。提出一个并行效率敏感的并行/分布式机器学习数据分块数选择准则,该准则可在保证并行/分布式机器学习模型测试精度的情况下,提高计算效率。首先推导并行/分布式机器学习模型的泛化误差与分块数目的关系。然后以此为基础,提出折衷泛化性与并行效率的数据分块数选择准则。最后,在ADMM框架下随机傅里叶特征空间中,给出采用该数据分块数选择准则的大规模支持向量机实现方案,并在高性能计算集群和大规模标准数据集上对所提出的数据分块数选择准则的有效性进行实验验证。 展开更多
关键词 大规模支持向量机 模型选择 数据分块 交替方向乘子法 随机傅里叶特征
在线阅读 下载PDF
基于单类分类方法的道路高排放源识别算法 被引量:1
9
作者 周汉胜 李泽瑞 周金华 《传感器与微系统》 CSCD 北大核心 2023年第1期140-143,148,共5页
为了提高对道路高排放源的识别效率,降低其造成的大气污染,提出了一种基于随机傅里叶特征和非常稀疏映射的单类分类(OCC)宽度学习系统(BLS)的道路高排放源识别方法,即OCC-FS-BLS。首先,将道路高排放源数据进行非线性的随机傅里叶特征映... 为了提高对道路高排放源的识别效率,降低其造成的大气污染,提出了一种基于随机傅里叶特征和非常稀疏映射的单类分类(OCC)宽度学习系统(BLS)的道路高排放源识别方法,即OCC-FS-BLS。首先,将道路高排放源数据进行非线性的随机傅里叶特征映射得到BLS的特征节点,再通过非常稀疏随机映射生成增强节点,拼接所有节点作为BLS输出层的输入;然后,通过岭回归求解改进BLS的输出权重;最后,根据OCC-BLS构建单类分类算法的策略,实现OCC-FS-BLS算法。实验结果表明:OC-FS-BLS在高排放源识别任务中相比OCC-BLS等其他模型表现出更好的识别性能。 展开更多
关键词 高排放源识别 单类分类 宽度学习系统 随机傅里叶特征 非常稀疏随机映射 遥感监测
在线阅读 下载PDF
隐私保护的非线性联邦支持向量机研究
10
作者 杨鸿健 胡学先 +2 位作者 李可佳 徐阳 魏江宏 《计算机科学》 CSCD 北大核心 2022年第12期22-32,共11页
联邦学习为解决“数据孤岛”下的多方联合建模问题提出了新的思路。联邦支持向量机能够在数据不出本地的前提下实现跨设备的支持向量机建模,然而现有研究存在训练过程中隐私保护不足、缺乏针对非线性联邦支持向量机的研究等缺陷。针对... 联邦学习为解决“数据孤岛”下的多方联合建模问题提出了新的思路。联邦支持向量机能够在数据不出本地的前提下实现跨设备的支持向量机建模,然而现有研究存在训练过程中隐私保护不足、缺乏针对非线性联邦支持向量机的研究等缺陷。针对以上问题,利用随机傅里叶特征方法和CKKS同态加密机制,提出了一种隐私保护的非线性联邦支持向量机训练(PPNLFedSVM)算法。首先,基于随机傅里叶特征方法在各参与方本地生成相同的高斯核近似映射函数,将各参与方的训练数据由低维空间显式映射至高维空间中;其次,基于CKKS密码体制的模型参数安全聚合算法,保障模型聚合过程中各参与方模型参数及其贡献的隐私性,并结合CKKS密码体制的特性对参数聚合过程进行针对性优化调整,以提高安全聚合算法的效率。针对安全性的理论分析和实验结果表明,PPNLFedSVM算法可以在不损失模型精度的前提下,保证参与方模型参数及其贡献在训练过程中的隐私性。 展开更多
关键词 联邦学习 隐私保护 同态加密 支持向量机 多方安全随机种子协商 随机傅里叶特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部