In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were e...In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were established based on the Hunt method.The material parameters of MgTiO3 such as elastic modulus,Poisson ratio,glass transition temperature,thermal conductivity and specific heat capacity were measured.Based on the fitting curve and the material parameters measured,the cross-WLF viscosity model and P-V-T model required for MgTiO3 ceramic injection molding were optimized.Furthermore,the influence of process parameters on mold filling flow and distribution of parts defects was researched.It was found that the gate position,injection speed and melt temperature have greater influence on mold filling flow and the packing process has an obvious effect on parts’defects.On this basis,the MgTiO3 ceramic parts injection molding experiment verification was carried out.By comparing the experimental results with the simulated results,it is found that the deformation error is within 1.5%and the density error is within 1%.Therefore,this research provided theoretical guidance for the engineering application of MgTiO3 ceramic parts fabricated by injection molding.展开更多
The injection molding products with different volume ratios of ZrO2 ceramic powder to 316L stainless steel powder were prepared. Properties and structure of the products were characterized by X-ray diffraction(XRD),...The injection molding products with different volume ratios of ZrO2 ceramic powder to 316L stainless steel powder were prepared. Properties and structure of the products were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope (TEM). The results show that the compressive stress exists in the products and the bend strength reaches 300MPa. ZrO2 phase and stainless steel phase are uniform in samples. The toughness of ceramic increases with the increasing the content of stainless steel. Through TEM study of the interface, some crystalline orientation relationships are determined.展开更多
基金Project(2018CFB439)supported by the Hubei Province Natural Science Foundation,China。
文摘In order to predict the powder flow law of the injection molding process of MgTiO3 ceramic parts with complex structures,a constitutive model and numerical simulation method for MgTiO3 ceramic injection molding were established based on the Hunt method.The material parameters of MgTiO3 such as elastic modulus,Poisson ratio,glass transition temperature,thermal conductivity and specific heat capacity were measured.Based on the fitting curve and the material parameters measured,the cross-WLF viscosity model and P-V-T model required for MgTiO3 ceramic injection molding were optimized.Furthermore,the influence of process parameters on mold filling flow and distribution of parts defects was researched.It was found that the gate position,injection speed and melt temperature have greater influence on mold filling flow and the packing process has an obvious effect on parts’defects.On this basis,the MgTiO3 ceramic parts injection molding experiment verification was carried out.By comparing the experimental results with the simulated results,it is found that the deformation error is within 1.5%and the density error is within 1%.Therefore,this research provided theoretical guidance for the engineering application of MgTiO3 ceramic parts fabricated by injection molding.
文摘The injection molding products with different volume ratios of ZrO2 ceramic powder to 316L stainless steel powder were prepared. Properties and structure of the products were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope (TEM). The results show that the compressive stress exists in the products and the bend strength reaches 300MPa. ZrO2 phase and stainless steel phase are uniform in samples. The toughness of ceramic increases with the increasing the content of stainless steel. Through TEM study of the interface, some crystalline orientation relationships are determined.