In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,...In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles.展开更多
The aim of the investigations presented here was to understand how the stiffness of the adhesive affects the failure of ceramic tiles adhered to metallic backings. The working hypothesis was that varying the adhesive ...The aim of the investigations presented here was to understand how the stiffness of the adhesive affects the failure of ceramic tiles adhered to metallic backings. The working hypothesis was that varying the adhesive stiffness could have the same effect on the ballistic performance as a variation of the adhesive thickness.Two different projectile/target combinations were utilized for ballistic tests in order to generate extremely different loading conditions. With targets consisting of 6 mm aluminum oxide ceramic and 6 mm aluminum backing, complete penetration occurred in each test with 7.62 mm tungsten carbide core AP ammunition at an impact velocity of 940 m/s. In contrast, with ceramic tiles of 20 mm thickness on 13 mm steel backing,no penetration of the ceramic occurred at the impact of a 7.62 mm ball round at 840 m/s.Four different types of adhesive(high-strength till high-flexible) were tested in both configurations. The elongation of the adhesive layer, the deformation of the metallic backing and the failure of the ceramics were observed by means of a high-speed camera during the projectile/target interaction.The results of the ballistic tests showed that a higher fracture strain caused a larger deformation of the backing compared to adhesives, which exhibit a high tensile strength and low fracture strains.The experimental results indicate that the damage behavior of the ceramic/metal composites depends on the absolute elongation of the adhesive layer. This can be controlled either by the thickness or the stiffness of the bonding layer.展开更多
A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/s...A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.展开更多
文摘In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles.
文摘The aim of the investigations presented here was to understand how the stiffness of the adhesive affects the failure of ceramic tiles adhered to metallic backings. The working hypothesis was that varying the adhesive stiffness could have the same effect on the ballistic performance as a variation of the adhesive thickness.Two different projectile/target combinations were utilized for ballistic tests in order to generate extremely different loading conditions. With targets consisting of 6 mm aluminum oxide ceramic and 6 mm aluminum backing, complete penetration occurred in each test with 7.62 mm tungsten carbide core AP ammunition at an impact velocity of 940 m/s. In contrast, with ceramic tiles of 20 mm thickness on 13 mm steel backing,no penetration of the ceramic occurred at the impact of a 7.62 mm ball round at 840 m/s.Four different types of adhesive(high-strength till high-flexible) were tested in both configurations. The elongation of the adhesive layer, the deformation of the metallic backing and the failure of the ceramics were observed by means of a high-speed camera during the projectile/target interaction.The results of the ballistic tests showed that a higher fracture strain caused a larger deformation of the backing compared to adhesives, which exhibit a high tensile strength and low fracture strains.The experimental results indicate that the damage behavior of the ceramic/metal composites depends on the absolute elongation of the adhesive layer. This can be controlled either by the thickness or the stiffness of the bonding layer.
基金Project(51271080) supported by the National Natural Science Foundation of ChinaProject(2012JSSPITP1968) supported by the Innovative Foundation for Students of Jiangsu Province,ChinaProject(CKJB201204) supported by the Innovation Fund of Nanjing Institute of Technology,China
文摘A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.