针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进...针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。展开更多
为了解决红外图像对比度低、细节模糊的问题,提出了多尺度卷积结合双区间自适应亮度均衡化的红外图像增强方法.首先采用多尺度卷积对图像进行预处理;然后以最大化类内方差且最小化类间方差作为遗传算法适应度函数求解图像亮暗图层的划...为了解决红外图像对比度低、细节模糊的问题,提出了多尺度卷积结合双区间自适应亮度均衡化的红外图像增强方法.首先采用多尺度卷积对图像进行预处理;然后以最大化类内方差且最小化类间方差作为遗传算法适应度函数求解图像亮暗图层的划分阈值,并采用引入细节信息的双区间直方图进行均衡化,同时通过引入均方差和均值的灰度均匀化方式提高图像亮度;最后,将自适应受限拉普拉斯算子提取的细节图像与亮度提升的图像进行线性加权融合重构出细节边缘清晰、对比度较强的图像.采用不同场景下红外图像和细节丰富的灰度图像进行试验并与传统方法进行对比来验证该方法的有效性.本文方法处理后的图像信息熵(Entropy,En)、熵增强(Enhancement by Entropy,EME)和平均梯度(Average Gradient,AG)最大增幅分别由原来的5.0391、13.4461和7.8450增加到7.1633、90.2525和53.6177,表明该方法具有更好的性能.展开更多
文摘针对红外图像增强过程中容易饱和、细节丢失等问题,提出一种参数自设定的双直方图均衡化方法。根据灰度级累积概率密度黄金比例值将原始图像划分为两个独立的子图像。结合原始图像曝光度和子图像灰度级区间信息,对每个子图像的直方图进行多尺度自适应加权校正。基于校正后的直方图,对每个子图像分别作均衡化映射变换,最后合并子图像获得增强图像。在红外图像公开数据集INFRARED100上进行的测试显示,与亮度保持双直方图均衡化(Brightness Preserving Bi-Histogram Equalization,BBHE)、带平台限制的双直方图均衡化(Bi-histogram Equalization with a Plateau Limit,BHEPL)、基于曝光度的双直方图均衡化(Exposure based Sub-image Histogram Equalization,ESIHE)方法相比,所提方法增强的图像具有合适的平均对比度和更大的平均信息熵,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)、绝对平均亮度偏差(Absolute Mean Brightness Error,AMBE)指标上平均提升至少17.2%、4.0%、56.2%。实验结果表明,所提方法对不同亮度特征的红外图像都有良好的适应性,可有效增强红外图像对象和背景之间的对比度,在噪声抑制、亮度和细节保持等方面优于同类方法。
文摘为了解决红外图像对比度低、细节模糊的问题,提出了多尺度卷积结合双区间自适应亮度均衡化的红外图像增强方法.首先采用多尺度卷积对图像进行预处理;然后以最大化类内方差且最小化类间方差作为遗传算法适应度函数求解图像亮暗图层的划分阈值,并采用引入细节信息的双区间直方图进行均衡化,同时通过引入均方差和均值的灰度均匀化方式提高图像亮度;最后,将自适应受限拉普拉斯算子提取的细节图像与亮度提升的图像进行线性加权融合重构出细节边缘清晰、对比度较强的图像.采用不同场景下红外图像和细节丰富的灰度图像进行试验并与传统方法进行对比来验证该方法的有效性.本文方法处理后的图像信息熵(Entropy,En)、熵增强(Enhancement by Entropy,EME)和平均梯度(Average Gradient,AG)最大增幅分别由原来的5.0391、13.4461和7.8450增加到7.1633、90.2525和53.6177,表明该方法具有更好的性能.