基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Model Averaging,BMA)建立大渡河流域的BMA概率预报模型...基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Model Averaging,BMA)建立大渡河流域的BMA概率预报模型。通过CRPS、MAE、BS三种评价指标,对大渡河流域的BMA降水概率预报模型进行评价与检验,三种指标均显示BMA降水概率预报比原始集合预报具有更高的准确性,其中BMA模型的CRPS和MAE指标均值分别相比原始集合预报减少了31.6%和23.9%;分析模型权重参数,得出ECMWF对大渡河流域BMA降水预报贡献最大,即ECMWF对研究区域降水预报效果最好;模型对大渡河流域极端降水预报效果较差,常低估极端降水量。展开更多
降水邻域集合概率法是处理高分辨率降水集合预报不确定性的一种新方法。利用2017年5~7月GRAPES(Global and Regional Assimilation and Prediction Enhanced System)区域集合预报系统24 h降水预报资料,进行GRAPES降水邻域集合概率方法试...降水邻域集合概率法是处理高分辨率降水集合预报不确定性的一种新方法。利用2017年5~7月GRAPES(Global and Regional Assimilation and Prediction Enhanced System)区域集合预报系统24 h降水预报资料,进行GRAPES降水邻域集合概率方法试验,并针对邻域概率法的等权重和邻域尺度问题,设计了邻域格点权重修正邻域方案以及二分类权重修正邻域方案,进行降水的集合概率法、等权重邻域集合概率方法、权重修正邻域集合概率方法和二分类权重修正邻域集合概率方法等四种方法的格点相关及敏感性试验,并利用多种概率预报检验评分评估上述四种方法的预报效果。试验结果表明:(1)尽管采用邻域计算方案的三种邻域集合概率方法的降水概率预报评分各有优劣,如等权重邻域集合概率法的相对作用特征曲线面积评分略优,而权重修正邻域集合概率法和二分类权重修正邻域集合概率法的降水概率预报可靠性更高,但采用了邻域计算方案的降水概率预报评分均优于传统的集合概率方法;(2)降水邻域集合概率方法的预报技巧对邻域尺度很敏感,统计评分最优的邻域半径为5~8倍模式水平格距;(3)引入了权重修正的两个邻域集合概率预报方法在24 h降水量超过10 mm时改进较明显,能够提供更加客观的概率预报结果。总体上看,降水邻域集合概率方法具有较好的应用前景,恰当的邻域概率方法及邻域半径可以获得更合理的降水概率预报结果。展开更多
文摘基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Model Averaging,BMA)建立大渡河流域的BMA概率预报模型。通过CRPS、MAE、BS三种评价指标,对大渡河流域的BMA降水概率预报模型进行评价与检验,三种指标均显示BMA降水概率预报比原始集合预报具有更高的准确性,其中BMA模型的CRPS和MAE指标均值分别相比原始集合预报减少了31.6%和23.9%;分析模型权重参数,得出ECMWF对大渡河流域BMA降水预报贡献最大,即ECMWF对研究区域降水预报效果最好;模型对大渡河流域极端降水预报效果较差,常低估极端降水量。