期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
南海及周边地区晚春初夏降水变异关联主模态及其机理
1
作者 简茂球 彭敏 罗欣 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期1-9,共9页
基于近38年的观测资料,对南海及周边地区5、6份降水变异关联主模态及其机理进行了统计诊断分析。南海及周边地区5、6月份降水的第一关联主模态反映出5、6月的降水变异的空间分布相似,即中南半岛、南海及菲律宾海均为同号区,而在中国南... 基于近38年的观测资料,对南海及周边地区5、6份降水变异关联主模态及其机理进行了统计诊断分析。南海及周边地区5、6月份降水的第一关联主模态反映出5、6月的降水变异的空间分布相似,即中南半岛、南海及菲律宾海均为同号区,而在中国南方地区则与之反号;时间尺度上以年际变化为主。该模态与前期发生的ENSO事件有密切联系,在ENSO冷事件(暖事件)的强迫作用下,使得5、6月份在南海-菲律宾附近出现持续的异常气旋(反气旋),进而影响南海及周边地区的降水的持续异常。第二模态显示南海及周边地区5月、6月降水异常的空间分布大致反相,其中在南海中部及菲律宾海的降水异常与我国东部的降水负异常反号;时间尺度以年代际变化为主。该模态主要是受南海夏季风爆发时间出现年代际提前的影响所致,其中又以低频季内分量的年代际变异的作用更为重要。 展开更多
关键词 降水变异模 机理 南海及周边地区 晚春初夏
在线阅读 下载PDF
Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging 被引量:1
2
作者 HU Dan-gui SHU Hong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期684-694,共11页
In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of... In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy. 展开更多
关键词 space-time CoKriging product-sum model VARIOGRAM PRECIPITATION interpolation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部