期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于深度降噪卷积神经网络的宽波段共相检测研究 被引量:1
1
作者 李斌 刘银岭 +1 位作者 杨阿坤 陈莫 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1329-1339,共11页
拼接镜的共相误差检测是当前科学研究的热点问题之一,基于宽波段光源的共相检测技术解决了夏克哈特曼法由于目标流量低引起的测量时间长的问题,从而提升了piston误差的检测精度和量程。然而,当前宽波段算法在实际应用中,由于复杂的环境... 拼接镜的共相误差检测是当前科学研究的热点问题之一,基于宽波段光源的共相检测技术解决了夏克哈特曼法由于目标流量低引起的测量时间长的问题,从而提升了piston误差的检测精度和量程。然而,当前宽波段算法在实际应用中,由于复杂的环境以及相机扰动等干扰因素的存在导致获取的圆形孔径衍射图像含有一定量的噪声,从而导致相关系数值低于设定阈值,最终使该方法精度降低,甚至失效。针对这一问题,本文提出将基于深度降噪卷积神经网络(DnCNN)的算法集成到宽波段算法中,以实现对噪声干扰的控制,并保留远场图像的相位信息。首先,将使用MATLAB获得的圆孔衍射图像作为DnCNN的训练数据,然后,将不同噪声水平的图像导入到训练好的降噪模型中,即可得到降噪后的图像以及降噪前、后圆孔衍射图像的峰值信噪比和二者与清晰无噪声图像间的结构相似度。结果表明:降噪处理后的图像与理想清晰图像之间的平均结构相似度较处理之前有了明显提升,获得了理想的降噪效果,有效增强了宽波段算法在高噪声条件下的应对能力。该研究对于探索用于实际共相检测环境宽波段光源算法具有较强的理论意义和应用价值。 展开更多
关键词 拼接镜 piston误差 圆孔衍射 图像 深度降噪卷积神经网络
在线阅读 下载PDF
结合降噪卷积神经网络和条件生成对抗网络的图像双重盲降噪算法 被引量:5
2
作者 井贝贝 郭嘉 +2 位作者 王丽清 陈静 丁洪伟 《计算机应用》 CSCD 北大核心 2021年第6期1767-1774,共8页
针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分... 针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分布后的加噪图片和标签一同送入判别器进行降噪图像的判别;然后,利用判别结果对整个模型的隐层参数进行优化;最后,生成器和判别器在博弈中达到平衡,且生成器的残差捕获能力达到最优。实验结果表明,在Set12数据集上,当噪声水平分别为15、25、50时:所提算法与Dn CNN算法相比,基于像素点间误差评价指标,其峰值信噪比(PSNR)值分别提升了1.388 d B、1.725 d B、1.639 d B;所提算法与三维块匹配(BM3D)、加权核范数最小化(WNNM)、Dn CNN、收缩场级联(CSF)和一致性神经网络(CSNET)等现有算法相比,结构相似性(SSIM)评价指标值平均提升了0.000 2~0.104 1。实验结果验证了所提算法的优越性。 展开更多
关键词 图像双重盲 降噪卷积神经网络 条件生成对抗网络 生成器 判别器
在线阅读 下载PDF
采用双通道卷积神经网络构建的随机脉冲噪声深度降噪模型 被引量:2
3
作者 徐少平 林珍玉 +2 位作者 崔燕 刘蕊蕊 杨晓辉 《电子与信息学报》 EI CSCD 北大核心 2020年第10期2541-2548,共8页
为提高对随机脉冲噪声(RVIN)图像的降噪效果,该文提出一种被称为双通道降噪卷积神经网络(D-DnCNN)的RVIN深度降噪模型。首先,提取多个不同阶对数差值排序(ROLD)统计值及1个边缘特征统计值构成描述图块中心像素点是否为RVIN噪声的噪声感... 为提高对随机脉冲噪声(RVIN)图像的降噪效果,该文提出一种被称为双通道降噪卷积神经网络(D-DnCNN)的RVIN深度降噪模型。首先,提取多个不同阶对数差值排序(ROLD)统计值及1个边缘特征统计值构成描述图块中心像素点是否为RVIN噪声的噪声感知特征矢量。其次,利用预先训练好的深度置信网络(DBN)预测模型实现特征矢量到噪声标签的映射,完成对噪声图像中噪声点的检测。再次,在噪声检测标签的指示下采用Delaunay三角剖分插值算法快速修复噪声像素点从而获得初步复原图像。最后,将初步复原图像作为参考图像与噪声图像联接(concatenate)后输入D-DnCNN模型后获得残差图像,将参考图像减去残差图像即可获得降噪后图像。实验数据表明:D-DnCNN模型在各个噪声比例下的降噪效果均显著超过了现有的经典开关型RVIN降噪算法,与普通的单通道RVIN深度降噪模型相比也有较大幅度提升。 展开更多
关键词 图像处理 随机脉冲 双通道降噪卷积神经网络 参考图像 声感知特征 声检测 插值
在线阅读 下载PDF
分段式多层卷积神经网络渲染图像降噪模型 被引量:1
4
作者 郭奕臻 刘永翔 +4 位作者 纪信佑 李庭瑶 马利庄 吴恩华 盛斌 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第11期1692-1700,共9页
全局光照渲染技术在虚拟现实应用中日益普及,但其图像高分辨率采样带来的高时间成本严重影响用户感受.为解决上述问题,提出分段式卷积神经网络模型,对低分辨率采样渲染结果进行实时降噪并获得更高质量的渲染图像结果.该模型分为2段,针... 全局光照渲染技术在虚拟现实应用中日益普及,但其图像高分辨率采样带来的高时间成本严重影响用户感受.为解决上述问题,提出分段式卷积神经网络模型,对低分辨率采样渲染结果进行实时降噪并获得更高质量的渲染图像结果.该模型分为2段,针对已有降噪模型处理时序渲染结果序列时出现的不稳定性瓶颈,前段使用多层跳跃连接的循环卷积神经网络将渲染结果以序列为单位进行处理,保障降噪结果的时序稳定性;针对降噪模型在时序降噪中的效果瑕疵,后段串联多层渲染图像降噪卷积神经网络对处理结果进行优化;为加快模型训练速度并进一步提升降噪效果,使用低分辨率采样的场景反射率图、法线向量图、场景深度图、阴影图等渲染辅助图像信息作为辅助输入.所提模型综合了已有图像和视频降噪模型的优点,在5种自定义场景上的降噪实验结果表明,该模型具有良好的时序稳定性和降噪效果,镜面处噪点数量明显少于当前主流的OptiX降噪器;在降噪结果与目标图像的结构相似性(SSIM)指标上,与OptiX降噪器相比,该模型在5个场景中分别有5.8%,12.2%,1.5%,4.7%和1.8%的提升. 展开更多
关键词 实时 渲染 循环卷积神经网络 降噪卷积神经网络
在线阅读 下载PDF
基于DnCNN声音增强的高坝泄流微弱空化声音信号识别与提取 被引量:17
5
作者 刘昉 王润喜 +2 位作者 庞博慧 练继建 梁超 《振动与冲击》 EI CSCD 北大核心 2023年第21期52-62,共11页
空化空蚀是水工建筑物泄洪安全监测的重要内容,但是高坝泄流期间产生的强泄流噪声会大幅减弱空化空蚀音频监测方法的效果甚至致其失效。针对该问题提出了基于降噪卷积神经网络(denoising convolutional neural network,DnCNN)声音增强... 空化空蚀是水工建筑物泄洪安全监测的重要内容,但是高坝泄流期间产生的强泄流噪声会大幅减弱空化空蚀音频监测方法的效果甚至致其失效。针对该问题提出了基于降噪卷积神经网络(denoising convolutional neural network,DnCNN)声音增强的空化声信号增强方法,该方法依据语音增强思想,通过DnCNN实现带噪音频监测信号中空化声信号的增强。首先对该方法的实现原理和DnCNN网络结构进行了阐述,然后使用采集自空蚀和泄流试验的空化声信号和泄流噪声对该方法的效果进行验证,最后通过支持向量机信号多分类识别试验和单分类支持向量机空化声信号单分类识别试验对该方法的泛化性能和工程实用性进行评价。研究结果表明该方法能够有效提升带噪空化声信号的信噪比,极大地还原空化声信号的频谱结构特征,实现强泄流噪声中微弱空化声信号的识别与提取,同时该方法具有较强的泛化性能和较好的工程实用性。 展开更多
关键词 降噪卷积神经网络(DnCNN) 声音增强 空化 支持向量机 单分类支持向量机 信号识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部