期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于轻量神经网络的MEMS陀螺仪降噪与标定方法
1
作者 张睿桐 赵健康 崔超 《仪表技术与传感器》 CSCD 北大核心 2024年第11期22-27,共6页
针对MEMS陀螺仪测量模型中时变、非线性误差和高频噪声引起的姿态估计精度低及易发散的问题,提出一种基于深度学习的陀螺仪降噪与标定方法。对陀螺仪测量误差进行建模,采用卷积神经网络(CNN)从陀螺仪历史数据中提取误差模型特征,实现对... 针对MEMS陀螺仪测量模型中时变、非线性误差和高频噪声引起的姿态估计精度低及易发散的问题,提出一种基于深度学习的陀螺仪降噪与标定方法。对陀螺仪测量误差进行建模,采用卷积神经网络(CNN)从陀螺仪历史数据中提取误差模型特征,实现对陀螺仪数据实时降噪与标定,获得高精度姿态估计结果。原始陀螺仪数据经过网络降噪和标定后进行姿态估计,并将结果与参考姿态真值构建损失函数训练网络。在EuRoC导航数据集上的实验结果表明:与基于循环神经网络的方法和直接使用原始陀螺仪数据进行的姿态估计相比,基于CNN的方法误差分别降低了55.9%和96.4%,有效降低陀螺仪误差与噪声并提高姿态估计精度。网络轻量,参数仅有180个,适合嵌入式系统的应用。 展开更多
关键词 MEMS陀螺仪 深度学习 姿态估计 降噪与标定 卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部