为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法...为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法平滑风电出力,同时减小平滑结果的滞后性,得到风电并网功率和混合储能系统(hybrid energy storage system,HESS)参考功率。为了合理分配HESS的内部功率,借助CEEMDAN分解HESS的参考功率,得到高低频分量。综合考虑HESS功率和容量、荷电状态(state of charge,SOC)与负荷缺点率等因素,构建以年综合成本最小为目标的容量优化配置模型并采用改进阿基米德优化算法求解。基于实际算例进行仿真分析,结果表明,与原始风电并网相比,HESS配置方案将波动率减少了13.538%,平滑度提高了16.057%。相较于传统单一储能平抑效果更加明显,减少了容量配置。同时,对比传统阿基米德优化算法节省了15.325%的投资成本。展开更多
目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根...目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根据病情严重程度将其分为重症组(n=88)和非重症组(n=264),开展病例对照研究。利用RUSBoost模型以及改进的阿基米德优化算法,分析入院48 h内的39项常规实验室生化指标,帮助构建重症急性胰腺炎早期诊断预测模型,同步完成特征筛选和超参数优化,并利用ReliefF算法特征重要性排序和Logistic多因素分析,对筛选出的特征进行价值分析。结果在训练集上,改进机器学习模型的曲线下面积(area under curve,AUC)为0.922;在测试集上,改进机器学习模型的AUC达到了0.888。基于改进机器学习模型筛选出的预测重症急性胰腺炎发生的4个关键特征分别为C反应蛋白、血氯、血镁、纤维蛋白原水平,与ReliefF算法特征重要性排序和Logistic多因素分析结果相吻合。结论应用改进机器学习模型分析实验室检查结果,可帮助临床早期预测重症急性胰腺炎的发生。展开更多
高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(i...高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(improved Archimedes optimization algorithm,IAOA)优化深度置信网络(deep belief network,DBN)的充油电缆终端故障诊断方法。首先,采用MIC理论对电缆终端用硅油中溶解气体浓度的特征量进行降维处理并提取特征量;其次,将优选的特征量作为DBN网络模型的输入,并针对DBN网络超参数选取困难的缺点,提出采用IAOA优化DBN网络模型的超参数;再者,针对AOA算法容易陷入局部最优和搜索能力差等不足,引入多种改进策略优化AOA的方法提高AOA的寻优能力。最后,通过搭建充油电缆终端故障模拟实验平台,收集充油电缆终端故障样本数据并创建类别样本标签,验证了该模型的可行性。实例表明,所提出的诊断方法可以较好地完成故障诊断,测试集的准确率为98.33%。与传统故障诊断模型相比,该方法稳定性好、识别精度高,可为保障高压充油电缆终端的可靠运行提供理论基础。展开更多
文摘为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法平滑风电出力,同时减小平滑结果的滞后性,得到风电并网功率和混合储能系统(hybrid energy storage system,HESS)参考功率。为了合理分配HESS的内部功率,借助CEEMDAN分解HESS的参考功率,得到高低频分量。综合考虑HESS功率和容量、荷电状态(state of charge,SOC)与负荷缺点率等因素,构建以年综合成本最小为目标的容量优化配置模型并采用改进阿基米德优化算法求解。基于实际算例进行仿真分析,结果表明,与原始风电并网相比,HESS配置方案将波动率减少了13.538%,平滑度提高了16.057%。相较于传统单一储能平抑效果更加明显,减少了容量配置。同时,对比传统阿基米德优化算法节省了15.325%的投资成本。
文摘目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根据病情严重程度将其分为重症组(n=88)和非重症组(n=264),开展病例对照研究。利用RUSBoost模型以及改进的阿基米德优化算法,分析入院48 h内的39项常规实验室生化指标,帮助构建重症急性胰腺炎早期诊断预测模型,同步完成特征筛选和超参数优化,并利用ReliefF算法特征重要性排序和Logistic多因素分析,对筛选出的特征进行价值分析。结果在训练集上,改进机器学习模型的曲线下面积(area under curve,AUC)为0.922;在测试集上,改进机器学习模型的AUC达到了0.888。基于改进机器学习模型筛选出的预测重症急性胰腺炎发生的4个关键特征分别为C反应蛋白、血氯、血镁、纤维蛋白原水平,与ReliefF算法特征重要性排序和Logistic多因素分析结果相吻合。结论应用改进机器学习模型分析实验室检查结果,可帮助临床早期预测重症急性胰腺炎的发生。