期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于多通信半径与改进阿基米德算法的DV-Hop定位算法
1
作者 黄自晨 张烈平 +2 位作者 尹亚梦 谭铭扬 王守峰 《科学技术与工程》 北大核心 2024年第35期15145-15151,共7页
针对距离向量-跳距(distance vector-hop,DV-Hop)定位算法中未知节点估计位置与实际位置偏差较大的问题,提出了基于多通信半径与改进阿基米德算法的DV-Hop定位算法。首先,采用锚节点通信半径多级数分层的方法,减小未知节点最小跳数选取... 针对距离向量-跳距(distance vector-hop,DV-Hop)定位算法中未知节点估计位置与实际位置偏差较大的问题,提出了基于多通信半径与改进阿基米德算法的DV-Hop定位算法。首先,采用锚节点通信半径多级数分层的方法,减小未知节点最小跳数选取的误差;然后,对阿基米德算法中三个步骤进行改进,提高了算法的性能;最后,通过改进的阿基米德算法计算未知节点坐标。实验结果表明,相同环境下,提出的改进算法具有更好的定位效果。 展开更多
关键词 DV-HOP定位算法 多通信半径分层 阿基米德算法
在线阅读 下载PDF
一种基于阿基米德优化算法的室内超宽带定位方法
2
作者 李恒风 郭美佳 +7 位作者 梅竹青 孙浩原 莱昂尼德·切尔诺戈尔 郑宇 刘田 蔺发军 孙中森 金哲俊 《现代电子技术》 北大核心 2025年第11期8-16,共9页
超宽带定位是一种很有前景的定位方法,但在面对非视距环境时,其性能会下降。尽管已经提出了许多方法用于复杂室内环境中的非定向识别和补偿,但仅限于特定环境,或者需要基站具备进行有效测量所需的足够视线条件。为了全面解决这些问题,... 超宽带定位是一种很有前景的定位方法,但在面对非视距环境时,其性能会下降。尽管已经提出了许多方法用于复杂室内环境中的非定向识别和补偿,但仅限于特定环境,或者需要基站具备进行有效测量所需的足够视线条件。为了全面解决这些问题,文中提出一种基于超宽带(UWB)室内定位的测量方法。该方法首先使用控制终端根据室内场景的复杂度对室内场景进行预处理,调整天线延迟参数和卡尔曼滤波参数;然后利用阿基米德优化算法对定位数据进行初始收敛处理;最后利用Taylor算法对定位数据进行进一步优化。实验结果表明,该定位方法在视线条件下实现了小于3 cm的测距误差和约7 cm的定位误差。此外,在非视线条件下与传统方法相比,其可以实现优越的定位精度。 展开更多
关键词 超宽带 阿基米德优化算法 定位方法 卡尔曼滤波 室内定位 定位精度
在线阅读 下载PDF
融合聚集因子和正余弦搜索的阿基米德优化算法 被引量:1
3
作者 孙民民 张小庆 +3 位作者 曾竣哲 李娜 张莉 宋一佳 《仪表技术与传感器》 CSCD 北大核心 2024年第11期83-92,共10页
针对阿基米德优化算法(AOA)收敛精度差、跳出局部最优能力弱的不足,提出一种融合聚合因子与正余弦搜索的改进阿基米德优化算法(YMAOA)。首先,引入Sobol序列初始化种群,增强种群多样性;其次,将密度因子重构为非线性递减趋势,同时设计非... 针对阿基米德优化算法(AOA)收敛精度差、跳出局部最优能力弱的不足,提出一种融合聚合因子与正余弦搜索的改进阿基米德优化算法(YMAOA)。首先,引入Sobol序列初始化种群,增强种群多样性;其次,将密度因子重构为非线性递减趋势,同时设计非线性权值平衡算法在不同时期的探索能力和收敛速度;然后,设计基于聚集因子判断的随机反向学习策略,增强全局探索的寻优性能;同时在算法局部优化阶段融合正余弦搜索机制进行位置更新,协助算法跳离局部最优。将改进算法与标准AOA及其他同类算法在9个基准函数上进行对比实验,结果表明:YMAOA算法在寻优精度和收敛能力上有明显提升,对比同类改进AOA算法,YMAOA兼具收敛速度和跳出局部最优能力的优势,Wilcoxon秩和检验结果也证明YMAOA在搜索性能上具有显著性优势。 展开更多
关键词 阿基米德优化算法 聚集因子 正余弦优化 密度因子 反向学习
在线阅读 下载PDF
融合Sin混沌和分段权值的阿基米德优化算法 被引量:15
4
作者 罗仕杭 何庆 《计算机工程与应用》 CSCD 北大核心 2022年第14期63-72,共10页
针对阿基米德优化算法(Archimedes optimization algorithm,AOA)存在全局搜索能力弱、收敛精度低,易陷入局部最优等问题,提出融合Sin混沌和分段权值的阿基米德优化算法(SAOA)。采用无限折叠迭代的Sin混沌反向学习策略初始化种群,提高初... 针对阿基米德优化算法(Archimedes optimization algorithm,AOA)存在全局搜索能力弱、收敛精度低,易陷入局部最优等问题,提出融合Sin混沌和分段权值的阿基米德优化算法(SAOA)。采用无限折叠迭代的Sin混沌反向学习策略初始化种群,提高初始阶段解的质量,为全局搜索多样性奠定基础;引入算数交叉算子,将当前个体向与全局最优个体进行交叉,引导种群向最优解区域寻优,提高全局搜索能力;引入分段权值策略,平衡算法的全局勘探与局部开发能力,降低算法陷入局部最优的概率;通过对8个测试函数和部分CEC2014函数进行仿真实验及Wilcoxon秩和检验来评估改进算法的寻优性能,实验结果表明改进算法在搜索精度、收敛速度和稳定性等方面均有较大提升。另外,引入优化机械设计案例进行测试分析,进一步验证SAOA在工程优化问题上的可行性和适用性。 展开更多
关键词 阿基米德优化算法 Sin混沌反向学习 算数交叉操算子 分段权值 机械优化设计
在线阅读 下载PDF
多策略协同改进的阿基米德优化算法及其应用 被引量:13
5
作者 罗仕杭 何庆 《计算机应用研究》 CSCD 北大核心 2022年第5期1386-1394,共9页
针对阿基米德优化算法(AOA)寻优过程中存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合多策略的阿基米德优化算法(MAOA)。首先,采用随机高斯变异策略选取适应度优的多个个体引导种群向最优解区域寻优,增强全局搜索... 针对阿基米德优化算法(AOA)寻优过程中存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合多策略的阿基米德优化算法(MAOA)。首先,采用随机高斯变异策略选取适应度优的多个个体引导种群向最优解区域寻优,增强全局搜索能力;其次,利用多种混沌映射的随机性、遍历性和多样性,引入局部混沌搜索策略扩大混沌空间的搜索范围,提高算法的局部开发能力;同时,为了协调算法的全局勘探和局部开采能力,提出一种非线性动态密度降低因子;最后,利用Lévy飞行引导机制的黄金正弦策略对种群位置进行扰动更新,增加迭代过程中种群的多样性,提高算法跳出局部最优的能力。通过对12个基准测试函数和部分CEC2014测试函数进行仿真实验,结果表明所提算法能够改善AOA全局探索能力弱、易陷入局部最优等缺点,提高AOA的寻优精度和稳定性。另外,引入机械设计案例进行测试分析,进一步验证MAOA在处理实际问题上的适用性和可行性。 展开更多
关键词 阿基米德优化算法 随机高斯变异策略 非线性动态密度降低因子 Lévy飞行 黄金正弦 机械设计
在线阅读 下载PDF
基于黄金莱维引导机制的阿基米德优化算法 被引量:6
6
作者 陈俊 何庆 李守玉 《计算机应用》 CSCD 北大核心 2022年第9期2807-2815,共9页
针对标准阿基米德优化算法(AOA)在求解优化问题时存在全局探索能力弱、收敛速度慢和求解精度低等问题,提出一种多策略阿基米德优化算法(MSAOA)。首先,利用变区间初始化策略,使得初始种群尽可能地靠近全局最优解,从而提高初始解的质量;其... 针对标准阿基米德优化算法(AOA)在求解优化问题时存在全局探索能力弱、收敛速度慢和求解精度低等问题,提出一种多策略阿基米德优化算法(MSAOA)。首先,利用变区间初始化策略,使得初始种群尽可能地靠近全局最优解,从而提高初始解的质量;其次,提出黄金莱维引导机制,以提高算法在迭代后期的种群多样性;最后,在维持种群多样性的前提下,引入自适应波长算子,以达到提高算法搜索效率的目的。将所提算法与均衡器算法(EO)、正余弦算法(SCA)以及灰狼优化算法(GWO)在20个基准测试函数上进行比较实验。实验结果表明,所提算法具有更高的寻优精度和收敛速度,并将所提算法应用于4个机械设计实例中,再次验证了所提算法的有效性和优越性。 展开更多
关键词 阿基米德优化算法 黄金正弦 莱维飞行 变区间初始化 波长算子
在线阅读 下载PDF
基于自适应反馈调节因子的阿基米德优化算法 被引量:7
7
作者 陈俊 何庆 李守玉 《计算机科学》 CSCD 北大核心 2022年第8期237-246,共10页
针对基础阿基米德优化算法收敛速度慢、容易陷入局部最优的问题,文中提出了一种基于自适应反馈调节因子的阿基米德优化算法。首先,通过佳点集初始化种群,增强初始种群的遍历性,提高初始解的质量;其次,提出自适应反馈调节因子,平衡算法... 针对基础阿基米德优化算法收敛速度慢、容易陷入局部最优的问题,文中提出了一种基于自适应反馈调节因子的阿基米德优化算法。首先,通过佳点集初始化种群,增强初始种群的遍历性,提高初始解的质量;其次,提出自适应反馈调节因子,平衡算法的全局探索与局部开发能力;最后,提出了莱维旋转变换策略,增加种群的多样性,以防止算法陷入局部最优。将所提算法与主流算法在14个基准测试函数以及部分CEC2014函数上进行30次比较实验,结果表明,所提算法的平均寻优精度、标准差以及收敛曲线均优于对比算法。同时将所提算法分别与对比算法在14个基准函数上进行Wilcoxon秩和检验,检验结果显示所提算法与对比算法的差异性显著。将所提算法应用于焊接梁设计问题,其相比原始算法提升了2%,验证了所提算法的有效性。 展开更多
关键词 阿基米德优化算法 佳点集 自适应反馈调节因子 旋转变换算子 莱维飞行
在线阅读 下载PDF
基于秃鹰搜索算法的瑞雷面波频散曲线反演
8
作者 何胜 苏世杰 +2 位作者 姚振岸 毕升博 卜凯旭 《大地测量与地球动力学》 北大核心 2025年第2期136-139,共4页
针对使用传统粒子群算法及模拟退火算法等全局优化算法进行频散曲线反演时存在早熟收敛、易陷入局部最优的问题,将秃鹰搜索算法应用于频散曲线反演研究中。通过对多个典型地质理论模型和美国怀俄明地区的实测数据进行反演分析,结果表明... 针对使用传统粒子群算法及模拟退火算法等全局优化算法进行频散曲线反演时存在早熟收敛、易陷入局部最优的问题,将秃鹰搜索算法应用于频散曲线反演研究中。通过对多个典型地质理论模型和美国怀俄明地区的实测数据进行反演分析,结果表明,秃鹰搜索算法在瑞雷面波频散曲线反演中具有较强的适用性、稳定性和抗噪能力。 展开更多
关键词 瑞雷面波 频散曲线反演 全局优化 秃鹰搜索算法 阿基米德优化算法
在线阅读 下载PDF
基于DP-MSCAOA算法的梯级水库多目标防洪优化调度研究 被引量:2
9
作者 王必磊 李晓英 周小青 《水电能源科学》 北大核心 2024年第7期193-197,34,共6页
为提高梯级水库联合防洪能力,针对不同频率洪水,综合考虑大坝防洪安全和下游防护区防洪安全,以调度期水库最高运行水位最低、下游防洪控制断面最大削峰和下游防护区超额洪量最小为目标,建立梯级水库多目标防洪联合优化调度模型,设计融... 为提高梯级水库联合防洪能力,针对不同频率洪水,综合考虑大坝防洪安全和下游防护区防洪安全,以调度期水库最高运行水位最低、下游防洪控制断面最大削峰和下游防护区超额洪量最小为目标,建立梯级水库多目标防洪联合优化调度模型,设计融合动态规划、多策略协同阿基米德优化算法优势的DP-MSCAOA嵌套优化算法,并以资水某梯级水库为例,针对不同频率洪水进行多目标防洪联合优化调度,与常规调度结果和粒子群优化结果进行对比。结果表明,多目标联合优化调度模型削峰和错峰效果更优,验证了多目标联合优化调度模型的适用性及DP-MSCAOA嵌套优化算法的有效性,可为降低洪灾风险、缓解防洪压力提供技术支撑。 展开更多
关键词 多目标防洪 梯级水库 优化调度模型 多策略协同阿基米德优化算法 动态规划
在线阅读 下载PDF
基于CEEMDAN-SAOA的平抑风电波动混合储能系统定容优化配置
10
作者 黄冬梅 吴冰 +3 位作者 时帅 李媛媛 宋巍 王晓亮 《电力系统保护与控制》 北大核心 2025年第15期59-70,共12页
为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法... 为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法平滑风电出力,同时减小平滑结果的滞后性,得到风电并网功率和混合储能系统(hybrid energy storage system,HESS)参考功率。为了合理分配HESS的内部功率,借助CEEMDAN分解HESS的参考功率,得到高低频分量。综合考虑HESS功率和容量、荷电状态(state of charge,SOC)与负荷缺点率等因素,构建以年综合成本最小为目标的容量优化配置模型并采用改进阿基米德优化算法求解。基于实际算例进行仿真分析,结果表明,与原始风电并网相比,HESS配置方案将波动率减少了13.538%,平滑度提高了16.057%。相较于传统单一储能平抑效果更加明显,减少了容量配置。同时,对比传统阿基米德优化算法节省了15.325%的投资成本。 展开更多
关键词 改进阿基米德算法 自适应噪声完全集合经验模态分解 风力发电 平抑功率波动 混合储能 容量配置
在线阅读 下载PDF
基于IVMD-LSTM的模块化多电平变换器故障诊断
11
作者 刘述喜 王乾蕴 +2 位作者 刘科 曲雨霏 罗钦 《太阳能学报》 北大核心 2025年第4期114-124,共11页
为提高模块化多电平变换器(MMC)子模块开关管开路故障诊断准确率和效率,提出一种基于改进型变分模态分解的长短期记忆递归神经网络(IVMD-LSTM)的MMC子模块开关管故障诊断方法。该方法直接采用子模块电容电压作为故障特征量,首先通过阿... 为提高模块化多电平变换器(MMC)子模块开关管开路故障诊断准确率和效率,提出一种基于改进型变分模态分解的长短期记忆递归神经网络(IVMD-LSTM)的MMC子模块开关管故障诊断方法。该方法直接采用子模块电容电压作为故障特征量,首先通过阿基米德优化算法(AOA)对变分模态分解(VMD)算法进行优化,得到不同样本特征的最优模态分量数量和惩罚因子,对故障样本数据进行模态分解,取特征最显著的3个模态分量组成数据集,然后使用LSTM对故障数据进行分类诊断,得到MMC子模块开关管故障最终诊断结果。仿真结果表明所提方法的分类诊断表现明显优于其他方法,提高了MMC开关管故障诊断准确率和效率,可实现精确、快速、可靠的故障诊断。 展开更多
关键词 模块化多电平变换器 故障诊断 变分模态分解 长短期记忆递归神经网络 阿基米德优化算法
在线阅读 下载PDF
基于AOA算法的风电系统最大功率点跟踪研究
12
作者 罗丹 章若冰 李夏青 《绿色科技》 2023年第14期266-270,共5页
在风电系统最大功率跟踪控制器设计时,爬山搜索法、扰动观察法等传统方法在跟踪速度和跟踪效率上存在局限性。考虑阿基米德优化算法是一种具有良好搜索性能的新型算法,能够更好地提高跟踪速率,提出了采用阿基米德优化算法(AOA算法)设计... 在风电系统最大功率跟踪控制器设计时,爬山搜索法、扰动观察法等传统方法在跟踪速度和跟踪效率上存在局限性。考虑阿基米德优化算法是一种具有良好搜索性能的新型算法,能够更好地提高跟踪速率,提出了采用阿基米德优化算法(AOA算法)设计风电系统最大功率跟踪控制器(MPPT-AOA)。为验证该方法的可行性选用固定风速和渐变风速2种状态下的最大功率跟踪结果,将该方法与遗传算法、人工蜂群算法进行了比较,通过MATLAB进行仿真验证,仿真结果表明:所提出的AOA-MPPT能够快速且有效地获得最大功率点,能够更好地提高风电系统效率。 展开更多
关键词 阿基米德优化算法 MPPT 最大功率 风电系统
在线阅读 下载PDF
基于IAOA-KELM的储气库注采管柱内腐蚀速率预测 被引量:3
13
作者 骆正山 于瑶如 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期971-977,共7页
针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降... 针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降低因子、采用黄金正弦算法缩小搜索空间,提高局部开发能力,利用改进阿基米德优化算法(Improved Archimedes Optimization Algorithm,IAOA)优化KELM正则化系数(C)和核函数参数(γ),进而建立IAOA-KELM储气库注采管柱内腐蚀速率预测模型;使用MATLAB软件运用该模型对某注采管柱内腐蚀数据集进行学习与预测,将IAOA-KELM模型与KELM、粒子群优化算法(Particle Swarm Optimization,PSO)-KELM、AOA-KELM结果进行预测误差对比。结果表明,IAOA-KELM模型的预测值与实际值较为拟合,其E RMSE为0.65%,E MAE为0.39%,R 2为99.83%,均优于其他模型。研究表明,IAOA-KELM模型能够更为准确地预测储气库注采管柱内腐蚀速率,为储气库注采管柱的运维及储气库的健康管理提供参考。 展开更多
关键词 安全工程 地下储气库 注采管柱 核极限学习机 改进阿基米德优化算法 腐蚀速率
在线阅读 下载PDF
基于参数优化VMD-MCKD的滚动轴承早期故障诊断 被引量:2
14
作者 陶翰铭 张栋良 +1 位作者 吴坤鹏 吴杰 《噪声与振动控制》 CSCD 北大核心 2024年第6期156-164,共9页
针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kur... 针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)参数的滚动轴承故障诊断方法。首先,将不同移位数下相关峭度和现有指标进行对比,选取最优相关峭度指标作为目标函数优化VMD算法中分解层数K和惩罚因子,并基于VMD分解结果选取最优分量;其次,提出一种加权包络谱峭度作为目标函数优化MCKD算法中滤波器长度L和冲击信号周期T,基于MCKD算法增强最优分量中的冲击成分;最后,通过包络谱分析判断滚动轴承故障类型。仿真和试验结果表明,该方法可以有效提取并增强故障中的冲击成分,实现在强背景噪声下的滚动轴承早期故障诊断。 展开更多
关键词 故障诊断 滚动轴承 阿基米德算法 变分模态分解 最大相关峭度解卷积
在线阅读 下载PDF
基于优化VMD-GRU的滚动轴承剩余使用寿命预测 被引量:1
15
作者 郗涛 王锴 王莉静 《中国工程机械学报》 北大核心 2024年第1期101-106,共6页
为了提高滚动轴承剩余使用寿命(RUL)的预测精度,提出了一种变分模态分解(VMD)和门控循环神经网络(GRU)融合算法的滚动轴承RUL预测模型VMD-GRU。首先,该模型通过阿基米德优化算法(AOA)优化的VMD算法对原始振动信号进行分解;然后,利用最... 为了提高滚动轴承剩余使用寿命(RUL)的预测精度,提出了一种变分模态分解(VMD)和门控循环神经网络(GRU)融合算法的滚动轴承RUL预测模型VMD-GRU。首先,该模型通过阿基米德优化算法(AOA)优化的VMD算法对原始振动信号进行分解;然后,利用最小包络熵准则选择最佳模态分量进行退化特征提取;再通过核主成分分析进行特征降维;最后,为保证模型准确率,通过鹈鹕优化算法(POA)优化GRU中的超参数,并根据不同故障类型建立GRU剩余寿命预测模型。使用XJTU-SY标准数据集进行剩余寿命预测验证,实验结果表明:与传统未结合故障类型提取退化特征和建立预测模型方法相比,VMD-GRU模型均方根误差和平均绝对误差分别降低了26.28%和27.17%。 展开更多
关键词 滚动轴承 剩余寿命预测 变分模态分解(VMD) 门控循环神经网络(GRU) 阿基米德优化算法(AOA) 鹈鹕优化算法(POA)
在线阅读 下载PDF
严重遮挡场景下AOA-ENN辅助列车定位的方法研究
16
作者 武晓春 杨伟康 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2871-2883,共13页
铁路周边卫星遮挡情况复杂多变,当列车在隧道等严重遮挡场景下运行时,北斗卫星导航系统/捷联惯性导航系统(BDS/SINS)列车组合定位系统无法接收到卫星信号,导致列车定位误差累积甚至定位失效。为提高列车在严重遮挡场景下的定位精度,提... 铁路周边卫星遮挡情况复杂多变,当列车在隧道等严重遮挡场景下运行时,北斗卫星导航系统/捷联惯性导航系统(BDS/SINS)列车组合定位系统无法接收到卫星信号,导致列车定位误差累积甚至定位失效。为提高列车在严重遮挡场景下的定位精度,提出阿基米德优化算法优化的Elman神经网络(AOA-ENN)辅助BDS/SINS列车组合定位系统进行列车定位的方法。首先,在无迹卡尔曼滤波算法中引入新息理论得到自适应无迹卡尔曼滤波算法(AUKF),将其作为BDS/SINS列车组合定位系统的信息融合算法。其次,基于模糊C均值聚类算法(FCM)建立列车运行场景识别模型,依据环境特征参数对列车运行场景进行自主识别。最后根据场景识别模型的输出结果,当列车在开阔、低遮挡、高遮挡场景运行时,通过AUKF对BDS和SINS解算的定位信息进行融合来完成列车定位,同时将采集的列车定位数据加入训练集,对AOA-ENN进行在线训练;当列车在严重遮挡场景下运行时,BDS无法正常接收信号,利用训练好的AOA-ENN辅助列车组合定位系统进行定位,利用AUKF对AOA-ENN的预测信息和SINS解算的信息进行融合后输出定位结果。实验结果表明:在严重遮挡场景下,AOA-ENN辅助列车组合定位系统得到的定位成功率达到98.2%;通过不同优化算法和神经网络的仿真对比实验,验证了AOA-ENN在辅助列车组合定位系统定位时的优越性。所得成果为优化列车在隧道等严重遮挡场景下的定位精度提供了参考。 展开更多
关键词 列车组合定位系统 运行环境识别 自适应无迹卡尔曼滤波 阿基米德优化算法 ELMAN神经网络
在线阅读 下载PDF
利用PVDF压电传感器实现接触滑动的快速检测
17
作者 吴海彬 黄力文 《振动与冲击》 EI CSCD 北大核心 2024年第24期135-144,共10页
工业机器人在进行工件抓取过程中,往往存在夹持力过大使工件破损、夹持力过小导致工件滑落的矛盾。为此,提出一种接触滑动的快速检测方法,采用聚偏二氟乙烯(polyvinylidene fluoride, PVDF)压电传感器作为滑觉感知元件。首先,利用阿基... 工业机器人在进行工件抓取过程中,往往存在夹持力过大使工件破损、夹持力过小导致工件滑落的矛盾。为此,提出一种接触滑动的快速检测方法,采用聚偏二氟乙烯(polyvinylidene fluoride, PVDF)压电传感器作为滑觉感知元件。首先,利用阿基米德优化算法(Archimedes optimization algorithm, AOA)优化变分模态分解(variational mode decomposition, VMD)对传感器信号进行分解与重构,降低噪声干扰;然后,提取信号的时频域特征,构建信号特征集;最后,使用蜣螂优化算法(dung beetle optimization, DBO)优化选取长短期记忆网络(long short-term memory networks, LSTM)参数,将DBO优化选取后的参数和信号特征集用于构建滑动检测识别模型。将所提滑动检测方法应用于电动夹爪抓取试验,结果表明,该方法实现了接触状态的精准快速识别,准确率达到100%,识别时间在20 ms以内,根据识别结果可实时调整电动夹爪夹持力大小。 展开更多
关键词 滑动检测 聚偏二氟乙烯(PVDF) 阿基米德优化算法(AOA) 变分模态分解(VMD) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于改进的机器学习模型对重症急性胰腺炎诊断的早期预测 被引量:2
18
作者 李龙 尹梁宇 +6 位作者 种菲菲 童宁 黎娜 刘洁 余相江 王耀丽 许红霞 《陆军军医大学学报》 CAS CSCD 北大核心 2024年第7期753-759,共7页
目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根... 目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根据病情严重程度将其分为重症组(n=88)和非重症组(n=264),开展病例对照研究。利用RUSBoost模型以及改进的阿基米德优化算法,分析入院48 h内的39项常规实验室生化指标,帮助构建重症急性胰腺炎早期诊断预测模型,同步完成特征筛选和超参数优化,并利用ReliefF算法特征重要性排序和Logistic多因素分析,对筛选出的特征进行价值分析。结果在训练集上,改进机器学习模型的曲线下面积(area under curve,AUC)为0.922;在测试集上,改进机器学习模型的AUC达到了0.888。基于改进机器学习模型筛选出的预测重症急性胰腺炎发生的4个关键特征分别为C反应蛋白、血氯、血镁、纤维蛋白原水平,与ReliefF算法特征重要性排序和Logistic多因素分析结果相吻合。结论应用改进机器学习模型分析实验室检查结果,可帮助临床早期预测重症急性胰腺炎的发生。 展开更多
关键词 重症急性胰腺炎 机器学习模型 阿基米德优化算法 C反应蛋白
在线阅读 下载PDF
基于高速飞行器火力控制模型的智能解算方法
19
作者 杨犇 金飞腾 +2 位作者 刘燕斌 陈柏屹 彭寿勇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1693-1701,共9页
研究吸气式高速飞行器的火力控制解算问题,针对高速飞行器较传统的亚音速与超音速飞行器系统响应时间短,飞行环境复杂,对火力控制模型解算要求度高等难点,提出了一种高速飞行器火力控制模型的解算方法。构建了面向高速飞行器平台的火力... 研究吸气式高速飞行器的火力控制解算问题,针对高速飞行器较传统的亚音速与超音速飞行器系统响应时间短,飞行环境复杂,对火力控制模型解算要求度高等难点,提出了一种高速飞行器火力控制模型的解算方法。构建了面向高速飞行器平台的火力控制模型,并根据高速飞行器的飞行特性,使用快速模拟法结合阿基米德优化算法求解攻击区域,并反解出载机初始的指令信号。仿真结果表明,该解算方法解算精度高,控制参数少,所实现的攻击区域广,且能发挥高速飞行器较强的飞行性能。 展开更多
关键词 高速飞行器 火力控制 攻击区域 阿基米德优化算法 智能解算
在线阅读 下载PDF
基于MIC与IAOA-DBN的充油电缆终端故障诊断方法
20
作者 连鸿松 杨静雨 李长云 《高电压技术》 CSCD 北大核心 2024年第12期5259-5268,共10页
高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(i... 高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(improved Archimedes optimization algorithm,IAOA)优化深度置信网络(deep belief network,DBN)的充油电缆终端故障诊断方法。首先,采用MIC理论对电缆终端用硅油中溶解气体浓度的特征量进行降维处理并提取特征量;其次,将优选的特征量作为DBN网络模型的输入,并针对DBN网络超参数选取困难的缺点,提出采用IAOA优化DBN网络模型的超参数;再者,针对AOA算法容易陷入局部最优和搜索能力差等不足,引入多种改进策略优化AOA的方法提高AOA的寻优能力。最后,通过搭建充油电缆终端故障模拟实验平台,收集充油电缆终端故障样本数据并创建类别样本标签,验证了该模型的可行性。实例表明,所提出的诊断方法可以较好地完成故障诊断,测试集的准确率为98.33%。与传统故障诊断模型相比,该方法稳定性好、识别精度高,可为保障高压充油电缆终端的可靠运行提供理论基础。 展开更多
关键词 充油电缆终端 故障诊断 最大互信息系数 改进阿基米德优化算法 深度置信网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部