Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) perfo...Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.展开更多
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio...In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61271262,61473047 and 61572083in part by Shaanxi Provincial Natural Science Foundation under Grant 2015JM6310in part by the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University 310824152010 and 0009-2014G1241043
文摘Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.
基金supported by the Aeronautical Science Foundation of China(No.20151067003)。
文摘In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.