为快速、准确预测接触网复合绝缘子临界污闪电压,减少人工污秽试验工作量,提出了一种复合绝缘子污秽闪络电压预测模型。首先,利用黄金正弦(golden sine algorithm,GSA)与分段线性混沌映射(piecewise linear chaotic map,PWLCM)改进的减...为快速、准确预测接触网复合绝缘子临界污闪电压,减少人工污秽试验工作量,提出了一种复合绝缘子污秽闪络电压预测模型。首先,利用黄金正弦(golden sine algorithm,GSA)与分段线性混沌映射(piecewise linear chaotic map,PWLCM)改进的减法平均优化器(subtraction average based optimizer,SABO)算法增强反向传播(back propagation,BP)神经网络的性能;其次,利用人工污秽试验获取10种不同复合绝缘子的闪络电压,收集相关试验参数;再次,依据Obenaus模型对复合绝缘子污秽闪络表现进行分析,利用斯皮尔曼(Spearman)相关系数法筛选出与复合绝缘子临界污闪电压密切相关的4个参数作为预测模型的输入特征量,以预测复合绝缘子临界污闪电压;最后,利用五折交叉验证法对预测模型进行综合评估,并与常用智能优化算法预测模型的预测结果进行比较。结果表明:GSABO-BP模型预测复合绝缘子污闪电压平均绝对误差为1.244 kV,平均绝对百分比误差为2.25%,模型可决系数稳定在0.98以上;与改进前的SABO-BP模型相比,预测值平均误差下降67.80%。GSABO-BP模型在复合绝缘子污闪电压预测上具有较高的预测精准度,对电气化铁路供电系统的防污保护工作具有重要意义。展开更多
文摘为快速、准确预测接触网复合绝缘子临界污闪电压,减少人工污秽试验工作量,提出了一种复合绝缘子污秽闪络电压预测模型。首先,利用黄金正弦(golden sine algorithm,GSA)与分段线性混沌映射(piecewise linear chaotic map,PWLCM)改进的减法平均优化器(subtraction average based optimizer,SABO)算法增强反向传播(back propagation,BP)神经网络的性能;其次,利用人工污秽试验获取10种不同复合绝缘子的闪络电压,收集相关试验参数;再次,依据Obenaus模型对复合绝缘子污秽闪络表现进行分析,利用斯皮尔曼(Spearman)相关系数法筛选出与复合绝缘子临界污闪电压密切相关的4个参数作为预测模型的输入特征量,以预测复合绝缘子临界污闪电压;最后,利用五折交叉验证法对预测模型进行综合评估,并与常用智能优化算法预测模型的预测结果进行比较。结果表明:GSABO-BP模型预测复合绝缘子污闪电压平均绝对误差为1.244 kV,平均绝对百分比误差为2.25%,模型可决系数稳定在0.98以上;与改进前的SABO-BP模型相比,预测值平均误差下降67.80%。GSABO-BP模型在复合绝缘子污闪电压预测上具有较高的预测精准度,对电气化铁路供电系统的防污保护工作具有重要意义。