期刊文献+
共找到472篇文章
< 1 2 24 >
每页显示 20 50 100
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
1
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
2
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
3
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
采用门控循环单元神经网络和多特征融合的铣削刀具磨损监测 被引量:1
4
作者 葛慧 韩林池 +7 位作者 麻俊方 宋清华 王润琼 刘战强 杜宜聪 王兵 蔡玉奎 赵金富 《机械科学与技术》 CSCD 北大核心 2024年第4期667-673,共7页
为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效... 为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效性进行了验证,分析了不同超参数设置对模型识别精度的影响机制,给出了最优超参数,实现了对铣削刀具磨损的精确识别。 展开更多
关键词 刀具磨损 铣削力信号 状态监测 门控循环单元神经网络
在线阅读 下载PDF
融合图神经网络、门控循环单元与注意力机制的分子性质预测方法
5
作者 随海燕 袁洪波 +3 位作者 周焕笛 赵欢 霍静倩 程曼 《河北农业大学学报》 CSCD 北大核心 2024年第6期40-46,61,共8页
分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意... 分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意力机制的网络模型(Gated recurrent unit-attention-convolutional graph neural networks,GAGCN)用于分子性质的预测。该模型通过图神经网络(Graph neural network,GNN)对分子图进行表示学习,利用节点之间的连接和信息传播来捕捉分子的结构特征;使用门控循环单元(Gated recurrent unit,GRU)对分子序列进行建模,从而捕捉分子序列中的时序信息,通过门控机制自适应地选择保留或丢弃序列中的信息。最后通过注意力机制自适应地学习不同特征之间的权重,将GNN和GRU进行融合,从而使模型可以充分利用分子的结构和序列信息,以提高分子性质预测的准确性。试验结果表明该模型对于LogP的预测精度MSE、MAE和R2分别达到了0.0010、0.0116和0.9993。本文提出的模型为新农药、新兽药的研发提供了技术支持和参考。 展开更多
关键词 药物研发 分子性质预测 神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于门限递归单元循环神经网络的交通流预测方法研究 被引量:19
6
作者 王体迎 时鹏超 +2 位作者 刘蒋琼 刘博艺 时天昊 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2018年第11期76-82,共7页
为了有效地实施智能交通管理系统,需要进一步提高交通流量预测的准确率。提出了一种基于门限递归单元循环神经网络的短时交通流量预测方法,该方法可以不依靠先验知识,有效地利用"序列信息"建模。通过使用该方法对加拿大大不... 为了有效地实施智能交通管理系统,需要进一步提高交通流量预测的准确率。提出了一种基于门限递归单元循环神经网络的短时交通流量预测方法,该方法可以不依靠先验知识,有效地利用"序列信息"建模。通过使用该方法对加拿大大不列颠哥伦比亚省的真实交通流量数据进行建模分析,并对比了在不同滞后时间的输入数据下该方法的预测效果,然后将其与ARIMA和SVR的预测结果进行了对比,同时也展示了该方法在工作日和周末的实际预测效果。结果表明:该方法预测效果良好,其平均绝对百分误差比ARIMA与SVR分别平均降低了74.72%和12.15%,预测值和实际交通流量吻合度高,是一种预测精度高且有效的交通流量预测方法。 展开更多
关键词 交通运输工程 智能交通系统 交通流量预测 门限递归单元 递归神经网络
在线阅读 下载PDF
基于循环神经网络的2-DOF软体机械臂运动建模与控制 被引量:3
7
作者 丁卫 郑云 +1 位作者 钟宋义 杨扬 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期522-531,共10页
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、... 因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrentunit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6»8 mm,显著降低了软体机器人的控制与建模难度. 展开更多
关键词 循环神经网络 门控循环单元模型 软体机械臂 建模与控制
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
8
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
融合字符与词语特征的混合神经网络情感分析模型
9
作者 李嘉琦 杨环 高辉 《计算机工程与应用》 北大核心 2025年第13期227-234,共8页
汉语语句中没有明显的分隔符,这导致传统基于词语划分的编码模型可能会丢失句子内部的语义信息,特别是在处理情感分析等任务时显得更为复杂。为克服这一难题,借鉴字符级和词语级特征融合的思路,提出了一种融合特征模型。该模型将句子划... 汉语语句中没有明显的分隔符,这导致传统基于词语划分的编码模型可能会丢失句子内部的语义信息,特别是在处理情感分析等任务时显得更为复杂。为克服这一难题,借鉴字符级和词语级特征融合的思路,提出了一种融合特征模型。该模型将句子划分为两种级别的编码,采用Bi-GRU结构提取字符序列中的包含上下文信息的特征关系,并引入注意力机制,使用CNN网络结构提取词语之间的局部特征关系,利用不同大小的卷积核获得不同距离的局部特征,最后将二者特征进行融合,获得全局特征信息。在三个公开数据集Weibo、CIN和Chnsenticorp上的准确率分别达到了81.32%、76.03%和96.28%,相比于以字符编码为基础的MCNN-IFGS模型,分别提高了1.02个百分点、0.13个百分点和1.05个百分点,结果表明在中文情感分析任务中,融合特征模型的表现明显优于单独使用字符级或词语级特征的模型,能够显著提升模型的性能和鲁棒性,更有效地提取文本的语义信息。 展开更多
关键词 情感分析 混合神经网络 字符特征 词语特征 双向门控循环单元
在线阅读 下载PDF
基于并行混合神经网络的碾米机故障诊断方法
10
作者 孙秋 蔡华锋 《中国农机化学报》 北大核心 2025年第6期221-227,共7页
为能够对碾米机故障进行快速诊断,提出一种基于并行混合神经网络的碾米机故障诊断方法。搭建碾米机故障采集系统,主要由供电端、故障端、数据采集端和数据处理端4个部分组成,其中数据采集端用于采集碾米机故障信号,数据处理端则主要负... 为能够对碾米机故障进行快速诊断,提出一种基于并行混合神经网络的碾米机故障诊断方法。搭建碾米机故障采集系统,主要由供电端、故障端、数据采集端和数据处理端4个部分组成,其中数据采集端用于采集碾米机故障信号,数据处理端则主要负责接收并处理碾米机的故障数据,将故障数据集带入具有全局均值池化(GAP)的并行混合神经网络中进行特征提取和故障分类,获取故障诊断结果,并与其他最新的故障诊断模型进行比较。试验结果表明,该方法能够将碾米机的故障诊断精度提升至90.72%,与其他模型相比诊断性能更加优越,对碾米机故障实现快速诊断具有重要意义。 展开更多
关键词 碾米机 故障诊断 门控循环单元 并行混合神经网络 全局均值池化
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
11
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于循环神经网络模型的创伤重症患者临床结局的动态预测 被引量:2
12
作者 齐戈尧 徐进 金志超 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1241-1249,共9页
目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患... 目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患者院内结局为预测目标,使用长短时记忆(LSTM)和门控循环单元(GRU)2种RNN算法分别在4、6和8 h时间窗下训练动态预测模型。使用灵敏度、特异度、F1值和AUC值对模型性能进行评价,并分析不同RNN算法和时间窗对模型性能的影响。在8 h时间窗下分别训练隐马尔科夫模型(HMM)、随机森林(RF)模型和logistic模型作为对照,横向比较2种RNN算法模型与对照模型的性能指标,并分析各模型的时间趋势变化。结果 在不同时间窗时,RNN动态模型在灵敏度、特异度、F1值和AUC值等4个性能指标上差异均有统计学意义(均P<0.001),在8 h时间窗时模型的各性能指标均高于6 h和4 h时;不同RNN算法(LSTM和GRU)间仅特异度差异有统计学意义(P=0.036)。横向比较结果显示,2种RNN算法模型和其他模型间各性能指标差异均有统计学意义(均P<0.001),2种RNN算法模型各指标均高于HMM、RF和logistic模型;各算法模型灵敏度、特异度和F1值的ICC均小于0.400(95% CI未包含0),而AUC值的ICC在统计学上证据不足(95% CI包含0)。结论 基于RNN算法的动态模型对创伤重症患者临床结局的预测效果较其他常见模型具有一定优势,且时间窗对模型性能可能存在影响。 展开更多
关键词 循环神经网络 长短期记忆网络 门控循环单元 创伤 动态模型 临床结局 预测模型
在线阅读 下载PDF
基于门控循环神经网络的边缘服务中心风光荷组合预测方法 被引量:2
13
作者 欧阳含熠 张立梅 白牧可 《现代电力》 北大核心 2024年第1期65-71,共7页
边缘计算因数据处理快、低成本和高实时等优点近年来在能源行业中受到广泛关注,而在边缘服务器上开展预测有助于对能源精细化管控。因此,针对边缘服务资源的有限性,基于差分自回归整合移动平均(autoregressive integrated moving averag... 边缘计算因数据处理快、低成本和高实时等优点近年来在能源行业中受到广泛关注,而在边缘服务器上开展预测有助于对能源精细化管控。因此,针对边缘服务资源的有限性,基于差分自回归整合移动平均(autoregressive integrated moving average,ARIMA)模型和门控循环单元(gated recurrent unit,GRU)神经网络,提出考虑线性和非线性特征的风、光、荷组合预测方法。ARIMA用于提取源、荷的线性特征,将其与真实值进行拟合,得到包含非线性特征的残差。其次,将残差作为GRU的训练数据集建立预测模型,再引入剪枝和量化方法优化及压缩GRU模型,减小预测模型规模,以适应边缘服务器部署。大量仿真结果表明,所构建的GRU压缩模型规模小、预测精度高,适合边缘服务器的部署应用。 展开更多
关键词 风光荷 边缘服务器 门控循环单元 神经网络 ARIMA 组合预测
在线阅读 下载PDF
面向工业流程异常检测的均衡循环神经网络
14
作者 许荣斌 章宇 +3 位作者 谢莹 刘志强 张以文 闻立杰 《计算机集成制造系统》 EI CSCD 北大核心 2024年第12期4459-4467,共9页
智能制造的迅速发展给网络安全防护带来了巨大的机遇与挑战,各类安全威胁会造成严重的损失甚至灾难,已成为工业互联网亟待解决的问题。鉴于此,提出一种新的均衡循环神经网络,利用神经网络的适应性特点,采用长短期记忆网络(LSTM)的门电... 智能制造的迅速发展给网络安全防护带来了巨大的机遇与挑战,各类安全威胁会造成严重的损失甚至灾难,已成为工业互联网亟待解决的问题。鉴于此,提出一种新的均衡循环神经网络,利用神经网络的适应性特点,采用长短期记忆网络(LSTM)的门电路特性,针对工业互联网流数据随着时间推移异常检测准确性较低的问题,通过不同权重与当前输入数据重构得出遗忘门控、输入门控和输出门控。随后通过sigmoid激活函数求得预测结果,并将该结果作为门控循环单元网络(GRU)的网络层输入,由GRU网络层促使当前网络快速拟合,从而较快地获得较优的参数。本方法结合LSTM和GRU的优势,保留LSTM最后时刻的隐藏状态,作为下一层网络GRU的输入,使网络层的连接更加平滑,最大程度地保留LSTM所学习到的参数,获取隐藏特征,既可提高神经网络的精度,又可高效、快速地检测工业互联网络的异常。 展开更多
关键词 循环神经网络 长短期记忆 门控循环单元 工业互联网 异常检测
在线阅读 下载PDF
基于门循环单元神经网络的中文分词法 被引量:22
15
作者 李雪莲 段鸿 许牧 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期237-243,共7页
目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任... 目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任务的方法,该方法可以自动学习特征,并有效建模长距离依赖信息,但是该模型较为复杂,存在模型训练和预测时间长的缺陷.针对该问题,提出了基于门循环单元(gated recurrent unit,GRU)神经网络的中文分词法,该方法继承了LSTM模型可自动学习特征、能有效建立长距离依赖信息的优点,具有与基于LSTM神经网络中文分词法相当的性能,并在速度上有显著提升. 展开更多
关键词 自然语言处理 中文分词 循环单元 字嵌入 循环神经网络
在线阅读 下载PDF
基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法 被引量:49
16
作者 李超然 肖飞 +2 位作者 樊亚翔 杨国润 唐欣 《电工技术学报》 EI CSCD 北大核心 2020年第9期2051-2062,共12页
锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方... 锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方法利用Huber-M估计改进卡尔曼滤波器的鲁棒性,并将基于GRU-RNN所估算的锂离子电池SOC值作为改进卡尔曼滤波器的观测量。在两组锂离子电池数据集上分别进行锂离子电池SOC估算实验。实验结果表明,基于GRU-RNN和HKF融合方法的锂离子电池SOC估算模型不仅能够准确地实现锂离子电池SOC估算,而且能够降低测量误差及异常值对估算结果的影响,使锂离子电池SOC估算结果快速且精确收敛。 展开更多
关键词 锂电池 荷电状态 门控循环单元神经网络 卡尔曼滤波
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
17
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于门控循环单元神经网络的储层孔渗饱参数预测 被引量:23
18
作者 王俊 曹俊兴 +2 位作者 尤加春 刘杰 周欣 《石油物探》 EI CSCD 北大核心 2020年第4期616-627,共12页
孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法... 孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法,门控循环单元(gated recurrent unit,GRU)神经网络算法能较好地反映出孔渗饱参数与测井数据之间的非线性映射关系以及不同深度历史数据之间的关联。基于GRU神经网络的储层孔渗饱参数预测方法首先采用基于Copula函数的相关性测度法筛选与孔渗饱参数关联度较高的测井参数,而后利用GRU神经网络建立测井数据与孔渗饱参数之间的非线性映射关系。对四川盆地某探区实际测井数据进行了GRU神经网络储层孔渗饱参数预测的模型训练和预测试验,最后将预测结果与多元回归分析、循环神经网络等方法的预测结果进行比较,结果表明,以均方根误差和Pearson相关系数为评价指标,基于门控循环单元神经网络的储层孔渗饱参数预测方法效果优于其它方法。 展开更多
关键词 相关性分析 COPULA函数 循环神经网络 门控循环单元神经网络 孔隙度 渗透率 饱和度 储层预测
在线阅读 下载PDF
基于图卷积网络和双向门控循环单元的电力系统主导失稳模式辨识
19
作者 王长江 张千龙 +2 位作者 姜涛 陈厚合 陶宇轩 《中国电机工程学报》 北大核心 2025年第16期6326-6339,I0016,共15页
为快速准确辨识电力系统主导失稳模式,该文提出一种基于图卷积神经网络(graph convolutional network,GCN)和双向门控循环单元(bi-directional gated recurrent unit,Bi-GRU)的电力系统主导失稳模式辨识方法。首先,根据系统故障前后暂... 为快速准确辨识电力系统主导失稳模式,该文提出一种基于图卷积神经网络(graph convolutional network,GCN)和双向门控循环单元(bi-directional gated recurrent unit,Bi-GRU)的电力系统主导失稳模式辨识方法。首先,根据系统故障前后暂态电气量时序演变规律及空间分布特性,构建表征电力系统运行状态的特征矩阵;然后,建立GCN与Bi-GRU相结合的深度学习模型,利用GCN整合拓扑空间信息提高模型泛化性,同时利用Bi-GRU自适应感知输入特征的全局时间序列信息,以深度挖掘特征矩阵的空间特性和时序特性,进而明晰暂态过程中各暂态电气量间的深层联系及交互影响,实现电力系统主导失稳模式的精确辨识;最后,通过修改后IEEE-39节点系统和某地区实际电网的实验结果表明,所提方法具备一定可解释性,相比其他深度学习方法在有效性、准确性和适应性方面存在一定的优势。 展开更多
关键词 主导失稳模式 电压稳定 功角稳定 图卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于强化学习单元匹配循环神经网络的滚动轴承状态趋势预测 被引量:5
20
作者 李锋 陈勇 +1 位作者 王家序 汤宝平 《计算机集成制造系统》 EI CSCD 北大核心 2020年第8期2050-2059,共10页
为了解决当前人工智能预测方法在滚动轴承状态趋势预测中预测精度较差、计算效率较低的问题,提出基于强化学习单元匹配循环神经网络(RLUMRNN)的滚动轴承状态趋势预测新方法。先采用滑动平均奇异谱熵作为滚动轴承状态退化特征,再将该特... 为了解决当前人工智能预测方法在滚动轴承状态趋势预测中预测精度较差、计算效率较低的问题,提出基于强化学习单元匹配循环神经网络(RLUMRNN)的滚动轴承状态趋势预测新方法。先采用滑动平均奇异谱熵作为滚动轴承状态退化特征,再将该特征作为RLUMRNN的输入完成滚动轴承状态趋势预测。在RLUMRNN中,利用最小二乘线性回归法构造单调趋势识别器,将轴承整体的状态退化趋势分为上升、下降、平稳3种单调趋势单元,并通过强化学习为每一种单调趋势单元选择一个隐层数和隐层节点数与其相适应的循环神经网络,从而改善了RLUMRNN的非线性逼近能力和泛化性能;用3种单调趋势单元和不同隐层数、隐层节点数分别表示Q值表的状态和动作,并构造关于循环神经网络输出误差的新型奖励函数,以明确强化学习的目标,从而减小循环神经网络的输出误差,避免在Q值表更新过程中使Agent(即决策函数)盲目搜索,提高了RLUMRNN的收敛速度。通过双列滚子轴承状态趋势预测实例验证了该方法具有较高的预测精度和计算效率。 展开更多
关键词 强化学习单元匹配循环神经网络 强化学习 奇异谱熵 状态趋势预测 滚动轴承
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部