期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进SAGGAN模型的齿轮故障分类方法研究
1
作者 刘洋 但斌斌 +2 位作者 易灿灿 严旭果 薛家成 《机电工程》 CAS 北大核心 2024年第12期2185-2194,共10页
针对齿轮故障样本获取困难,导致深度学习驱动故障分类模型的可靠性和准确性不足这一问题,提出了一种基于改进自注意力门单元生成对抗网络(SAGGAN)的半监督齿轮故障分类模型。首先,为增强改进SAGGAN模型的特征表示能力,提升齿轮故障的半... 针对齿轮故障样本获取困难,导致深度学习驱动故障分类模型的可靠性和准确性不足这一问题,提出了一种基于改进自注意力门单元生成对抗网络(SAGGAN)的半监督齿轮故障分类模型。首先,为增强改进SAGGAN模型的特征表示能力,提升齿轮故障的半监督分类效果,在自注意力生成对抗网络(SAGAN)的基础上,引入了门控通道转换模块(GCT)、改进自注意力门控模块(SAG)和预训练的Inception V3分支;然后,使用齿轮故障实验装置采集齿轮断齿、磨损、周节误差和正常四种状态下的振动信号,并将数据划分为训练集、验证集与测试集;最后,将计算结果与现有的半监督分类方法:TripleGAN、Bad-GAN、Reg-GAN、SF-GAN进行了对比,并对改进模块进行了消融实验研究。研究结果表明:在标签样本为40、60、80、100时,改进SAGGAN模型的整体分类准确率分别为89%、90%、92%、94.25%,远高于其他四种方法,特别在只有少量标签样本情况下的优越性更为明显。以上结果揭示了改进的SAGGAN模型在齿轮故障分类领域中的实用性和优越性。 展开更多
关键词 齿轮故障 模式分类 自注意力门单元生成对抗网络 半监督学习 自注意力生成对抗网络 门控通道转换模块 自注意力门控模块
在线阅读 下载PDF
多分支特征映射的遥感图像目标检测算法 被引量:5
2
作者 闵锋 况永刚 +1 位作者 郝琳琳 彭伟明 《计算机科学与探索》 CSCD 北大核心 2024年第6期1543-1555,共13页
由于遥感图像具有背景复杂、目标较小且密集、尺度连续变化大等特点,通用目标检测器难以较好地适应,导致检测效果不佳。针对以上问题,基于YOLOv5s模型,提出一种多分支特征映射的遥感图像目标检测算法。首先,利用结构重参数化技术设计一... 由于遥感图像具有背景复杂、目标较小且密集、尺度连续变化大等特点,通用目标检测器难以较好地适应,导致检测效果不佳。针对以上问题,基于YOLOv5s模型,提出一种多分支特征映射的遥感图像目标检测算法。首先,利用结构重参数化技术设计一种结合门控通道转换的RepVGG模块,采用其串联结构替换原主干网络的C3模块,聚合全局上下文信息,增强特征表达和特征提取能力;其次,使用自适应指数加权池化方法以及逆过程重构特征融合网络的采样方式,最大化地保留特征信息,改善较小目标的检测效果;最后,引入EIoU和Focal Loss组合作为模型的损失函数,优化预测框的回归速率以及难易样本的损失权重分配,进一步提高定位精度。在DIOR和NWPU VHR-10数据集上的实验结果表明,提出算法的平均精度均值分别达到92.2%、92.5%,较YOLOv5s分别提高了3.5个百分点、5.6个百分点,达到了更好的检测效果,同时实时性也满足实际场景下的遥感图像目标检测。 展开更多
关键词 遥感图像 结构重参数化 门控通道转换 采样方式 损失权重分配
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部