期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法
1
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
预测轴承寿命的gate递归单元特征融合域自适应模型 被引量:1
2
作者 曾玉海 程峰 +1 位作者 魏春虎 杨世飞 《机电工程》 CAS 北大核心 2024年第4期613-621,共9页
采用现有的数据驱动模型对不同工况下的轴承剩余使用寿命(RUL)进行预测时,精度会大幅下降。针对这一问题,提出了一种基于门控递归单元特征融合领域自适应(GFFDA)模型的轴承RUL预测方法。首先,采用信号分析方法对轴承振动信号进行了特征... 采用现有的数据驱动模型对不同工况下的轴承剩余使用寿命(RUL)进行预测时,精度会大幅下降。针对这一问题,提出了一种基于门控递归单元特征融合领域自适应(GFFDA)模型的轴承RUL预测方法。首先,采用信号分析方法对轴承振动信号进行了特征提取,并采用特征评价的方法选择出了5个最优特征,在最优特征的基础上,采用粒子群算法优化后的支持向量机的方法对轴承的健康阶段进行了划分;然后,选择目标域和源域退化阶段的最优特征子集作为GFFDA模型的输入,采用源域数据对特征提取器和寿命预测模块进行了预训练;最后,更新了目标特征提取器和寿命预测模块,对目标域的RUL进行了预测;并使用西安交通大学的轴承数据集对该GFFDA模型的有效性进行了验证。研究结果表明:相比于现有的数据驱动模型,GFFDA模型具有更好的跨工况分析能力和更出色的信息提取能力;同时,在对变工况的轴承寿命进行预测时,采用GFFDA模型具有更好的性能。 展开更多
关键词 滚动轴承 剩余使用寿命(RUL) 特征评价 对抗自适应 门控递归单元特征融合领域自适应(GFFDA)模型 数据驱动模型
在线阅读 下载PDF
自适应特征融合级联Transformer视网膜血管分割算法 被引量:4
3
作者 梁礼明 卢宝贺 +1 位作者 龙鹏威 阳渊 《光电工程》 CAS CSCD 北大核心 2023年第10期37-49,共13页
针对眼底视网膜分割存在病理伪影干扰、微小血管分割不完全和血管前景与非血管背景对比度低等问题,本文提出一种自适应特征融合级联Transformer视网膜血管分割算法。该算法首先通过限制对比度直方图均衡化和Gamma校正等方法进行图像预处... 针对眼底视网膜分割存在病理伪影干扰、微小血管分割不完全和血管前景与非血管背景对比度低等问题,本文提出一种自适应特征融合级联Transformer视网膜血管分割算法。该算法首先通过限制对比度直方图均衡化和Gamma校正等方法进行图像预处理,以增强血管纹理特征;其次在编码部分设计自适应增强注意模块,降低计算冗余度同时消除视网膜背景图像噪声;然后在编解码结构底部加入级联群体Transformer模块,建立血管特征长短距离依赖;最后在解码部分引入门控特征融合模块,实现编解码语义融合,提升视网膜血管分割光滑度。在公共数据集DRIVE、CHASE_DB1和STARE上进行验证,准确率达到97.09%、97.60%和97.57%,灵敏度达到80.38%、81.05%和80.32%,特异性达到98.69%、98.71%和98.99%。实验结果表明,本文算法总体性能优于现有大多数先进算法,对临床眼科疾病的诊断具有一定应用价值。 展开更多
关键词 视网膜血管分割 TRANSFORMER 自适应增强注意力 门控特征融合
在线阅读 下载PDF
用于隧道超前支护小导管影像实时目标检测的Transformer模型
4
作者 郝蕊 范文娜 +5 位作者 孙安培 王焜 张素华 张瑾 张晋博 陈敏 《铁道建筑》 北大核心 2025年第4期92-98,共7页
针对因隧道内部环境复杂和小导管形态变化导致的超前支护小导管难以自动识别的问题,本文提出一种联合可变形卷积与门控特征融合机制的超前支护小导管影像实时检测Transformer模型。该模型通过可变形卷积灵活地进行特征图采样,提升模型... 针对因隧道内部环境复杂和小导管形态变化导致的超前支护小导管难以自动识别的问题,本文提出一种联合可变形卷积与门控特征融合机制的超前支护小导管影像实时检测Transformer模型。该模型通过可变形卷积灵活地进行特征图采样,提升模型对于小导道形态变化的适应能力,建立多尺度门控特征融合机制,自适应筛选并融合各个尺度的特征,过滤冗余信息。此外,在主干特征提取网络中引入部分卷积(Partial Convolution,PConv),在保持识别精度的同时降低模型计算量,提升了检测速度。试验结果表明,本文模型在保持推理速度的情况下,平均精度和每张影像最多考虑10个检测结果时的平均召回率指标较基线模型分别提升1.3%和0.9%,证明了模型改进的有效性。 展开更多
关键词 铁路隧道 目标检测 模型试验 超前支护小导管 可变形卷积 门控特征融合 模型轻量化
在线阅读 下载PDF
基于残差变换器的并行傅里叶卷积修复算法
5
作者 李海燕 宋应清 +2 位作者 郭磊 周丽萍 陈泉 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期42-51,共10页
为解决现有图像修复算法因缺乏上下文信息和有效的感受野导致修复大面积随机破损时效果差且只能修复低分辨率图像的缺陷,提出了基于残差变换器的并行傅里叶卷积修复算法.首先,提出基于变换器的改进残差网络模块提取待修复图像的纹理特征... 为解决现有图像修复算法因缺乏上下文信息和有效的感受野导致修复大面积随机破损时效果差且只能修复低分辨率图像的缺陷,提出了基于残差变换器的并行傅里叶卷积修复算法.首先,提出基于变换器的改进残差网络模块提取待修复图像的纹理特征;然后,设计并行快速傅里叶卷积模块增强损失图像的高度有效感受野捕捉结构信息;最后,提出门控双特征融合模块交换和结合图像的结构与纹理分量,融合上下文特征,改善生成纹理的细粒度.在两个公开数据集上进行定性和定量实验,实验结果表明:所提算法可有效修复结构复杂且纹理精细的随机不规则大面积破损区域,生成结构合理、纹理细腻和语义丰富的高保真图像,并能用于高分辨率图像的目标移除. 展开更多
关键词 图像修复 残差变换器 并行傅里叶卷积 门控特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部