期刊文献+
共找到435篇文章
< 1 2 22 >
每页显示 20 50 100
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
1
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
2
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
3
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于CNN-GRU组合神经网络的锂电池寿命预测模型研究
4
作者 张安安 谢琳惺 杨威 《电测与仪表》 北大核心 2025年第7期77-84,共8页
针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从... 针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从锂电池充电和放电实验中提取恒流充电时间间隔、恒压充电时间间隔、放电温度峰值时间及循环次数四种间接健康因子,建立Pearson及Spearman相关系数;构建基于CNN-GRU组合神经网络的锂电池寿命预测模型;通过实际数据验证提取健康因子的合理性,并将预测结果与支持向量机模型、长短期记忆(long short-term memory,LSTM)模型、GRU模型、CNN-LSTM模型对比分析,验证所提模型的优越性及有效性。 展开更多
关键词 锂电池 健康因子 相关系数 卷积神经网络 门控循环单元
在线阅读 下载PDF
采用门控循环单元神经网络和多特征融合的铣削刀具磨损监测 被引量:1
5
作者 葛慧 韩林池 +7 位作者 麻俊方 宋清华 王润琼 刘战强 杜宜聪 王兵 蔡玉奎 赵金富 《机械科学与技术》 CSCD 北大核心 2024年第4期667-673,共7页
为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效... 为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效性进行了验证,分析了不同超参数设置对模型识别精度的影响机制,给出了最优超参数,实现了对铣削刀具磨损的精确识别。 展开更多
关键词 刀具磨损 铣削力信号 状态监测 门控循环单元神经网络
在线阅读 下载PDF
融合图神经网络、门控循环单元与注意力机制的分子性质预测方法
6
作者 随海燕 袁洪波 +3 位作者 周焕笛 赵欢 霍静倩 程曼 《河北农业大学学报》 CSCD 北大核心 2024年第6期40-46,61,共8页
分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意... 分子性质预测在药物研发等领域具有广泛的应用,虽然目前已经开始尝试利用图神经网络等方法来进行分子性质预测,但是仍然存在着难以处理大规模分子图和信息传播的局限。针对这一问题,本文构建了一种融合图神经网络、门控循环单元和注意力机制的网络模型(Gated recurrent unit-attention-convolutional graph neural networks,GAGCN)用于分子性质的预测。该模型通过图神经网络(Graph neural network,GNN)对分子图进行表示学习,利用节点之间的连接和信息传播来捕捉分子的结构特征;使用门控循环单元(Gated recurrent unit,GRU)对分子序列进行建模,从而捕捉分子序列中的时序信息,通过门控机制自适应地选择保留或丢弃序列中的信息。最后通过注意力机制自适应地学习不同特征之间的权重,将GNN和GRU进行融合,从而使模型可以充分利用分子的结构和序列信息,以提高分子性质预测的准确性。试验结果表明该模型对于LogP的预测精度MSE、MAE和R2分别达到了0.0010、0.0116和0.9993。本文提出的模型为新农药、新兽药的研发提供了技术支持和参考。 展开更多
关键词 药物研发 分子性质预测 神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型
7
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于门控循环神经网络的边缘服务中心风光荷组合预测方法 被引量:2
8
作者 欧阳含熠 张立梅 白牧可 《现代电力》 北大核心 2024年第1期65-71,共7页
边缘计算因数据处理快、低成本和高实时等优点近年来在能源行业中受到广泛关注,而在边缘服务器上开展预测有助于对能源精细化管控。因此,针对边缘服务资源的有限性,基于差分自回归整合移动平均(autoregressive integrated moving averag... 边缘计算因数据处理快、低成本和高实时等优点近年来在能源行业中受到广泛关注,而在边缘服务器上开展预测有助于对能源精细化管控。因此,针对边缘服务资源的有限性,基于差分自回归整合移动平均(autoregressive integrated moving average,ARIMA)模型和门控循环单元(gated recurrent unit,GRU)神经网络,提出考虑线性和非线性特征的风、光、荷组合预测方法。ARIMA用于提取源、荷的线性特征,将其与真实值进行拟合,得到包含非线性特征的残差。其次,将残差作为GRU的训练数据集建立预测模型,再引入剪枝和量化方法优化及压缩GRU模型,减小预测模型规模,以适应边缘服务器部署。大量仿真结果表明,所构建的GRU压缩模型规模小、预测精度高,适合边缘服务器的部署应用。 展开更多
关键词 风光荷 边缘服务器 门控循环单元 神经网络 ARIMA 组合预测
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
9
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法 被引量:48
10
作者 李超然 肖飞 +2 位作者 樊亚翔 杨国润 唐欣 《电工技术学报》 EI CSCD 北大核心 2020年第9期2051-2062,共12页
锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方... 锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方法利用Huber-M估计改进卡尔曼滤波器的鲁棒性,并将基于GRU-RNN所估算的锂离子电池SOC值作为改进卡尔曼滤波器的观测量。在两组锂离子电池数据集上分别进行锂离子电池SOC估算实验。实验结果表明,基于GRU-RNN和HKF融合方法的锂离子电池SOC估算模型不仅能够准确地实现锂离子电池SOC估算,而且能够降低测量误差及异常值对估算结果的影响,使锂离子电池SOC估算结果快速且精确收敛。 展开更多
关键词 锂电池 荷电状态 门控循环单元神经网络 卡尔曼滤波
在线阅读 下载PDF
基于门控循环单元神经网络的储层孔渗饱参数预测 被引量:22
11
作者 王俊 曹俊兴 +2 位作者 尤加春 刘杰 周欣 《石油物探》 EI CSCD 北大核心 2020年第4期616-627,共12页
孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法... 孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法,门控循环单元(gated recurrent unit,GRU)神经网络算法能较好地反映出孔渗饱参数与测井数据之间的非线性映射关系以及不同深度历史数据之间的关联。基于GRU神经网络的储层孔渗饱参数预测方法首先采用基于Copula函数的相关性测度法筛选与孔渗饱参数关联度较高的测井参数,而后利用GRU神经网络建立测井数据与孔渗饱参数之间的非线性映射关系。对四川盆地某探区实际测井数据进行了GRU神经网络储层孔渗饱参数预测的模型训练和预测试验,最后将预测结果与多元回归分析、循环神经网络等方法的预测结果进行比较,结果表明,以均方根误差和Pearson相关系数为评价指标,基于门控循环单元神经网络的储层孔渗饱参数预测方法效果优于其它方法。 展开更多
关键词 相关性分析 COPULA函数 循环神经网络 门控循环单元神经网络 孔隙度 渗透率 饱和度 储层预测
在线阅读 下载PDF
基于迁移学习与GRU神经网络结合的锂电池SOH估计 被引量:4
12
作者 莫易敏 余自豪 +2 位作者 叶鹏 范文健 林阳 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期233-239,共7页
为解决退役电池梯次利用过程中单体剩余使用寿命估计困难、测试流程复杂与能耗高等问题,提出迁移学习与GRU网络结合的锂离子电池健康状态估计方法;设计的基础模型结构为输入层+GRU层+全连接层+输出层;根据健康因子的得分,选择训练基础... 为解决退役电池梯次利用过程中单体剩余使用寿命估计困难、测试流程复杂与能耗高等问题,提出迁移学习与GRU网络结合的锂离子电池健康状态估计方法;设计的基础模型结构为输入层+GRU层+全连接层+输出层;根据健康因子的得分,选择训练基础模型的数据集、划分电池相似度等级并制定对应的迁移学习策略。实验结果表明:与其他模型相比,分别使用数据集的前40%与前25%训练得到的基础模型与迁移学习模型,两者的精度分别最大提高42.48%与95.28%,而预测稳定性分别最大提高55.38%与93.55%。 展开更多
关键词 机器学习 迁移学习 锂电池 门控循环单元神经网络 健康状态估计
在线阅读 下载PDF
基于循环神经网络的2-DOF软体机械臂运动建模与控制 被引量:2
13
作者 丁卫 郑云 +1 位作者 钟宋义 杨扬 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期522-531,共10页
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、... 因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrentunit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6»8 mm,显著降低了软体机器人的控制与建模难度. 展开更多
关键词 循环神经网络 门控循环单元模型 软体机械臂 建模与控制
在线阅读 下载PDF
基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测 被引量:19
14
作者 方娜 李俊晓 +1 位作者 陈浩 李新新 《现代电力》 北大核心 2022年第4期441-448,共8页
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple line... 为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 展开更多
关键词 变分模态分解 卷积神经网络 双向门控循环单元 多元线性回归 负荷预测
在线阅读 下载PDF
考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计 被引量:11
15
作者 胡明辉 朱广曜 +1 位作者 刘长贺 唐国峰 《汽车工程》 EI CSCD 北大核心 2023年第9期1688-1701,共14页
由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联... 由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联合门控循环单元(GRU)神经网络和自适应扩展卡尔曼滤波(AEKF)的SOC估计,分别以AEKF和GRU神经网络的估计结果为模型值和测量值,通过卡尔曼滤波(KF)得到最终的SOC估计结果,并作为下一时刻AEKF的输入。结果表明,常温环境下考虑迟滞特性的模型对端电压预测及联合估计法对SOC估计的均方根误差(RMSE)分别在0.5 mV和0.64%以内;低温及变温环境下端电压预测及SOC估计的RMSE分别在0.9 mV和0.72%以内。考虑迟滞特性的模型及联合估计法具有良好的精度和鲁棒性。 展开更多
关键词 锂离子电池 迟滞特性 荷电状态 门控循环单元神经网络 自适应扩展卡尔曼滤波
在线阅读 下载PDF
基于并行混合神经网络的碾米机故障诊断方法
16
作者 孙秋 蔡华锋 《中国农机化学报》 北大核心 2025年第6期221-227,共7页
为能够对碾米机故障进行快速诊断,提出一种基于并行混合神经网络的碾米机故障诊断方法。搭建碾米机故障采集系统,主要由供电端、故障端、数据采集端和数据处理端4个部分组成,其中数据采集端用于采集碾米机故障信号,数据处理端则主要负... 为能够对碾米机故障进行快速诊断,提出一种基于并行混合神经网络的碾米机故障诊断方法。搭建碾米机故障采集系统,主要由供电端、故障端、数据采集端和数据处理端4个部分组成,其中数据采集端用于采集碾米机故障信号,数据处理端则主要负责接收并处理碾米机的故障数据,将故障数据集带入具有全局均值池化(GAP)的并行混合神经网络中进行特征提取和故障分类,获取故障诊断结果,并与其他最新的故障诊断模型进行比较。试验结果表明,该方法能够将碾米机的故障诊断精度提升至90.72%,与其他模型相比诊断性能更加优越,对碾米机故障实现快速诊断具有重要意义。 展开更多
关键词 碾米机 故障诊断 门控循环单元 并行混合神经网络 全局均值池化
在线阅读 下载PDF
基于卷积神经网络与门控循环单元的气液两相流流型识别方法 被引量:7
17
作者 张立峰 王智 吴思橙 《计量学报》 CSCD 北大核心 2022年第10期1306-1312,共7页
提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网... 提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网络输入,对流型进行识别。分析了输入序列长度对CNN-GRU、CNN及GRU网络分类准确的影响,确定了最佳输入向量维度分别为60、65及50,使用实验数据对3种网络进行训练、测试,结果表明,CNN-GRU网络分类准确率最高,平均流型识别准确率可达99.40%。 展开更多
关键词 计量学 流型识别 离散余弦变换 卷积神经网络 门控循环单元 电阻层析成像
在线阅读 下载PDF
基于门控循环单元神经网络的NO_(x)排放量预测 被引量:7
18
作者 杨国田 刘凯 王英男 《控制工程》 CSCD 北大核心 2022年第7期1204-1209,共6页
电站燃煤锅炉产生的排放是大气NO_(x)污染的主要来源之一,建立有效的NO_(x)排放模型是锅炉燃烧优化降低NO_(x)排放的基础。为充分地挖掘数据源与锅炉NO_(x)排放量的相关性,提出一种基于多层门控循环单元神经网络(GRU)的NO_(x)排放预测... 电站燃煤锅炉产生的排放是大气NO_(x)污染的主要来源之一,建立有效的NO_(x)排放模型是锅炉燃烧优化降低NO_(x)排放的基础。为充分地挖掘数据源与锅炉NO_(x)排放量的相关性,提出一种基于多层门控循环单元神经网络(GRU)的NO_(x)排放预测模型。首先,利用主成分分析对火电厂高维数据进行处理;然后,将提取的主成分作为GRU网络的输入,得到锅炉NO_(x)排放预测模型。以某660 MW电厂实际运行数据对模型进行了验证,仿真结果表明多层GRU模型具有较高的预测精度和较强的鲁棒性,可以更有效地对火电厂NO_(x)排放量进行预测。 展开更多
关键词 循环神经网络 深度学习 门控循环单元 NO_(x)排放预测
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
19
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于Savitzky-Golay滤波的双向门控循环单元神经网络汽轮机热耗率预测 被引量:3
20
作者 马良玉 王永军 《科学技术与工程》 北大核心 2020年第9期3623-3628,共6页
汽轮机热耗率是火电机组运行过程中的一项重要监测指标。为建立更加准确的汽轮机热耗率预测模型,借助某1 000 MW火电机组的真实历史数据,提出一种基于双向门控循环单元(gated recurrent unit,GRU)神经网络的汽轮机热耗率预测模型。针对... 汽轮机热耗率是火电机组运行过程中的一项重要监测指标。为建立更加准确的汽轮机热耗率预测模型,借助某1 000 MW火电机组的真实历史数据,提出一种基于双向门控循环单元(gated recurrent unit,GRU)神经网络的汽轮机热耗率预测模型。针对火电机组现场运行数据噪声大的问题,采用SG(Savitzky-Golay)滤波器对所选变量数据进行降噪处理,将处理后的数据作为建模样本构建双向GRU神经网络汽轮机热耗率预测模型。并将其与BP(back propagation)神经网络、传统循环神经网络等2种算法的模型预测结果进行对比,结果表明:双向GRU神经网络热耗率预测模型的预测精度更高,泛化能力和鲁棒性更强,能够满足现场的实际需求。 展开更多
关键词 汽轮机热耗率 Savitzky-Golay 循环神经网络 门控循环单元 时间序列
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部