期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
4
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于门循环单元神经网络模型的煤层底板突水动态预测
被引量:
6
1
作者
邓强
张召千
王震
《太原理工大学学报》
CAS
北大核心
2021年第5期810-816,共7页
在煤层底板突水理论及现场实测数据分析基础上,建立了煤层底板突水影响因素突水指标,并通过Wrapper评价策略的特征选择,筛选出了影响煤矿底板突水的主控因素。在对动态的煤层底板突水门循环单元神经网络模型进行训练并完成构建之后,将...
在煤层底板突水理论及现场实测数据分析基础上,建立了煤层底板突水影响因素突水指标,并通过Wrapper评价策略的特征选择,筛选出了影响煤矿底板突水的主控因素。在对动态的煤层底板突水门循环单元神经网络模型进行训练并完成构建之后,将其与三种静态神经网络预测模型进行比较。结果表明:煤层底板突水门循环神经网络模型预测的准确率在训练、验证及测试阶段都高于静态神经网络预测模型,能够很好地完成煤层底板突水预测,提高煤矿生产安全。
展开更多
关键词
煤层底板突水
特征选择
门
循环
单元
神经
网络
动态预测
在线阅读
下载PDF
职称材料
应用门循环神经网络的变电站智能记录分析装置信息配置方法
被引量:
6
2
作者
李铁成
曾四鸣
+3 位作者
刘清泉
任江波
杨经超
王敏学
《电力系统及其自动化学报》
CSCD
北大核心
2022年第1期108-113,共6页
为了节约人力资源,提高智能变电站二次设备数据输出端口地址信息在智能记录分析装置中的配置效率,提出了基于门循环单元神经网络的智能变电站二次设备端口地址信息的自动配置方法。首先,根据变电站二次设备端口描述文本的特点进行文本...
为了节约人力资源,提高智能变电站二次设备数据输出端口地址信息在智能记录分析装置中的配置效率,提出了基于门循环单元神经网络的智能变电站二次设备端口地址信息的自动配置方法。首先,根据变电站二次设备端口描述文本的特点进行文本预处理;然后,利用word2vec模型对文本进行词向量表示及语义关联分析;最后,设计了基于门循环单元神经网络模型的文本分类器,并利用此模型对端口描述文本进行分类映射实验。实验结果表明,基于门循环单元神经网络模型的二次设备端口信息配置方法准确率高、速度快,能够适用于二次设备端口信息的自动化配置。
展开更多
关键词
智能录波器
信息自动配置
词向量
门
循环
单元
神经
网络
文本分类
在线阅读
下载PDF
职称材料
基于改进的宽深度模型的推荐方法研究
被引量:
2
3
作者
王艺平
冯旭鹏
+1 位作者
刘利军
黄青松
《计算机应用与软件》
北大核心
2018年第11期49-54,共6页
现代社交网络的个性化博文推荐中,博文特征选取质量的高低直接影响了推荐的质量和效率。深度模型可以较高质量地提取出文本中句法和语义的特征。然而短文本特征稀疏且未考虑上下文语境的问题,普遍存在于文本推荐任务中。针对以上问题,...
现代社交网络的个性化博文推荐中,博文特征选取质量的高低直接影响了推荐的质量和效率。深度模型可以较高质量地提取出文本中句法和语义的特征。然而短文本特征稀疏且未考虑上下文语境的问题,普遍存在于文本推荐任务中。针对以上问题,在现有宽深度模型的基础上,利用门限循环单元对其多层普通神经网络进行改进,提出宽深度门循环联合(Wide&Deep-GRU)模型,进一步探索浅层部分和深度部分的联合训练。使用从新浪微博获取的真实数据集分别与单一逻辑回归模型、单一深度神经网络模型和宽深度模型进行对比。实验表明,该方法整体上推荐质量较高,同时推荐效率较之前模型也有显著提高。
展开更多
关键词
文本推荐
排序模型
深度学习
门循环神经单元
在线阅读
下载PDF
职称材料
改进EEMD-GRU混合模型在径流预报中的应用
被引量:
8
4
作者
刘扬
王立虎
+1 位作者
杨礼波
刘雪梅
《智能系统学报》
CSCD
北大核心
2022年第3期480-487,共8页
为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度...
为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度学习模型(EEMD-GRU)。该模型首先以智能算法对径流信号进行边界拓延,以解决EEMD边界效应。然后利用改进EEMD方法将径流信号分解为若干稳态分量,将各分量作为GRU模型的输入并对其进行预测。实验结果表明,与结合了经验模态分解的支持向量回归模型相比,并行EEMDGRU径流预测模型的预测精准度、可信度和效率分别提高82.50%、144.67%和95.49%。基于EEMD-GRU的最优运算结果表明,该方法可进一步减少区域防洪的经济损失,提高灾害监管的工作效率。
展开更多
关键词
径流预报
集合经验模态分解
深度学习
门
控制
循环
单元
神经
网络
并行计算
混合模型
时序预测
工程应用
在线阅读
下载PDF
职称材料
题名
基于门循环单元神经网络模型的煤层底板突水动态预测
被引量:
6
1
作者
邓强
张召千
王震
机构
太原理工大学矿业工程学院
秦皇岛工程设计研究院有限公司
出处
《太原理工大学学报》
CAS
北大核心
2021年第5期810-816,共7页
文摘
在煤层底板突水理论及现场实测数据分析基础上,建立了煤层底板突水影响因素突水指标,并通过Wrapper评价策略的特征选择,筛选出了影响煤矿底板突水的主控因素。在对动态的煤层底板突水门循环单元神经网络模型进行训练并完成构建之后,将其与三种静态神经网络预测模型进行比较。结果表明:煤层底板突水门循环神经网络模型预测的准确率在训练、验证及测试阶段都高于静态神经网络预测模型,能够很好地完成煤层底板突水预测,提高煤矿生产安全。
关键词
煤层底板突水
特征选择
门
循环
单元
神经
网络
动态预测
Keywords
Water inrush from coal floor
Feature selection
Gated recurrent unit neural network
Dynamic prediction
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
应用门循环神经网络的变电站智能记录分析装置信息配置方法
被引量:
6
2
作者
李铁成
曾四鸣
刘清泉
任江波
杨经超
王敏学
机构
国网河北省电力有限公司电力科学研究院
国网河北省电力有限公司
武汉凯默电气有限公司
出处
《电力系统及其自动化学报》
CSCD
北大核心
2022年第1期108-113,共6页
基金
国网河北省电力有限公司科技项目(kj2020-056)。
文摘
为了节约人力资源,提高智能变电站二次设备数据输出端口地址信息在智能记录分析装置中的配置效率,提出了基于门循环单元神经网络的智能变电站二次设备端口地址信息的自动配置方法。首先,根据变电站二次设备端口描述文本的特点进行文本预处理;然后,利用word2vec模型对文本进行词向量表示及语义关联分析;最后,设计了基于门循环单元神经网络模型的文本分类器,并利用此模型对端口描述文本进行分类映射实验。实验结果表明,基于门循环单元神经网络模型的二次设备端口信息配置方法准确率高、速度快,能够适用于二次设备端口信息的自动化配置。
关键词
智能录波器
信息自动配置
词向量
门
循环
单元
神经
网络
文本分类
Keywords
intelligent recorder
information automatic configuration
word vector
gate recurrent unit neural network
text classification
分类号
TM407 [电气工程—电器]
在线阅读
下载PDF
职称材料
题名
基于改进的宽深度模型的推荐方法研究
被引量:
2
3
作者
王艺平
冯旭鹏
刘利军
黄青松
机构
昆明理工大学信息工程与自动化学院
昆明理工大学教育技术与网络中心
云南省计算机技术应用重点实验室
出处
《计算机应用与软件》
北大核心
2018年第11期49-54,共6页
基金
国家自然科学基金项目(81360230
81560296)
文摘
现代社交网络的个性化博文推荐中,博文特征选取质量的高低直接影响了推荐的质量和效率。深度模型可以较高质量地提取出文本中句法和语义的特征。然而短文本特征稀疏且未考虑上下文语境的问题,普遍存在于文本推荐任务中。针对以上问题,在现有宽深度模型的基础上,利用门限循环单元对其多层普通神经网络进行改进,提出宽深度门循环联合(Wide&Deep-GRU)模型,进一步探索浅层部分和深度部分的联合训练。使用从新浪微博获取的真实数据集分别与单一逻辑回归模型、单一深度神经网络模型和宽深度模型进行对比。实验表明,该方法整体上推荐质量较高,同时推荐效率较之前模型也有显著提高。
关键词
文本推荐
排序模型
深度学习
门循环神经单元
Keywords
Text recommendation
Sorting model
Deep learning
GRU
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
在线阅读
下载PDF
职称材料
题名
改进EEMD-GRU混合模型在径流预报中的应用
被引量:
8
4
作者
刘扬
王立虎
杨礼波
刘雪梅
机构
华北水利水电大学信息工程学院
出处
《智能系统学报》
CSCD
北大核心
2022年第3期480-487,共8页
基金
河南省水利科技攻关项目(GG202042).
文摘
为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度学习模型(EEMD-GRU)。该模型首先以智能算法对径流信号进行边界拓延,以解决EEMD边界效应。然后利用改进EEMD方法将径流信号分解为若干稳态分量,将各分量作为GRU模型的输入并对其进行预测。实验结果表明,与结合了经验模态分解的支持向量回归模型相比,并行EEMDGRU径流预测模型的预测精准度、可信度和效率分别提高82.50%、144.67%和95.49%。基于EEMD-GRU的最优运算结果表明,该方法可进一步减少区域防洪的经济损失,提高灾害监管的工作效率。
关键词
径流预报
集合经验模态分解
深度学习
门
控制
循环
单元
神经
网络
并行计算
混合模型
时序预测
工程应用
Keywords
runoff prediction
ensemble empirical mode decomposition
deep learning
gated recurrent unit
parallel computing
hybrid model
time series prediction
engineering application
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TV124 [水利工程—水文学及水资源]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于门循环单元神经网络模型的煤层底板突水动态预测
邓强
张召千
王震
《太原理工大学学报》
CAS
北大核心
2021
6
在线阅读
下载PDF
职称材料
2
应用门循环神经网络的变电站智能记录分析装置信息配置方法
李铁成
曾四鸣
刘清泉
任江波
杨经超
王敏学
《电力系统及其自动化学报》
CSCD
北大核心
2022
6
在线阅读
下载PDF
职称材料
3
基于改进的宽深度模型的推荐方法研究
王艺平
冯旭鹏
刘利军
黄青松
《计算机应用与软件》
北大核心
2018
2
在线阅读
下载PDF
职称材料
4
改进EEMD-GRU混合模型在径流预报中的应用
刘扬
王立虎
杨礼波
刘雪梅
《智能系统学报》
CSCD
北大核心
2022
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部