期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于门循环单元神经网络模型的煤层底板突水动态预测 被引量:6
1
作者 邓强 张召千 王震 《太原理工大学学报》 CAS 北大核心 2021年第5期810-816,共7页
在煤层底板突水理论及现场实测数据分析基础上,建立了煤层底板突水影响因素突水指标,并通过Wrapper评价策略的特征选择,筛选出了影响煤矿底板突水的主控因素。在对动态的煤层底板突水门循环单元神经网络模型进行训练并完成构建之后,将... 在煤层底板突水理论及现场实测数据分析基础上,建立了煤层底板突水影响因素突水指标,并通过Wrapper评价策略的特征选择,筛选出了影响煤矿底板突水的主控因素。在对动态的煤层底板突水门循环单元神经网络模型进行训练并完成构建之后,将其与三种静态神经网络预测模型进行比较。结果表明:煤层底板突水门循环神经网络模型预测的准确率在训练、验证及测试阶段都高于静态神经网络预测模型,能够很好地完成煤层底板突水预测,提高煤矿生产安全。 展开更多
关键词 煤层底板突水 特征选择 门循环单元神经网络 动态预测
在线阅读 下载PDF
应用门循环神经网络的变电站智能记录分析装置信息配置方法 被引量:6
2
作者 李铁成 曾四鸣 +3 位作者 刘清泉 任江波 杨经超 王敏学 《电力系统及其自动化学报》 CSCD 北大核心 2022年第1期108-113,共6页
为了节约人力资源,提高智能变电站二次设备数据输出端口地址信息在智能记录分析装置中的配置效率,提出了基于门循环单元神经网络的智能变电站二次设备端口地址信息的自动配置方法。首先,根据变电站二次设备端口描述文本的特点进行文本... 为了节约人力资源,提高智能变电站二次设备数据输出端口地址信息在智能记录分析装置中的配置效率,提出了基于门循环单元神经网络的智能变电站二次设备端口地址信息的自动配置方法。首先,根据变电站二次设备端口描述文本的特点进行文本预处理;然后,利用word2vec模型对文本进行词向量表示及语义关联分析;最后,设计了基于门循环单元神经网络模型的文本分类器,并利用此模型对端口描述文本进行分类映射实验。实验结果表明,基于门循环单元神经网络模型的二次设备端口信息配置方法准确率高、速度快,能够适用于二次设备端口信息的自动化配置。 展开更多
关键词 智能录波器 信息自动配置 词向量 门循环单元神经网络 文本分类
在线阅读 下载PDF
改进EEMD-GRU混合模型在径流预报中的应用 被引量:8
3
作者 刘扬 王立虎 +1 位作者 杨礼波 刘雪梅 《智能系统学报》 CSCD 北大核心 2022年第3期480-487,共8页
为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度... 为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度学习模型(EEMD-GRU)。该模型首先以智能算法对径流信号进行边界拓延,以解决EEMD边界效应。然后利用改进EEMD方法将径流信号分解为若干稳态分量,将各分量作为GRU模型的输入并对其进行预测。实验结果表明,与结合了经验模态分解的支持向量回归模型相比,并行EEMDGRU径流预测模型的预测精准度、可信度和效率分别提高82.50%、144.67%和95.49%。基于EEMD-GRU的最优运算结果表明,该方法可进一步减少区域防洪的经济损失,提高灾害监管的工作效率。 展开更多
关键词 径流预报 集合经验模态分解 深度学习 控制循环单元神经网络 并行计算 混合模型 时序预测 工程应用
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部