期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于MICOA的随钻加速度计误差在线补偿
1
作者 杨金显 贺紫薇 《电子测量与仪器学报》 北大核心 2025年第1期187-194,共8页
为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。... 为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。其次,在长鼻浣熊算法基础上,根据递推重力加速度确定误差参数的初始搜索边界,同时根据当前误差参数、最优误差参数、边界值三者的相对距离缩小边界;再设计分界点筛选初始误差参数,使算法最初就朝着高质量解的方向搜索,同时保留部分劣解以增加误差参数多样性;接着在算法的全局探索阶段设计参数使其根据加速度计当前误差参数与误差参数平均值之间的误差来调整加速度计误差参数的搜索范围;最后,将重力模值之比设为深度开发阈值,构造高斯变异个体向量使加速度计误差参数跳出局部最优。实验结果表明:经MICOA补偿之后,加速度误差减小,井斜角范围降低了约62.5%,不同钻进角度下,井斜角均方根误差与标准差均能保持在1°以下。 展开更多
关键词 随钻测量 加速度计 长鼻浣熊算法 误差补偿 井斜角
在线阅读 下载PDF
基于ICOA-XGBoost的光伏阵列复合故障诊断研究
2
作者 张子洵 魏业文 +2 位作者 张轲钦 方豪 吴先用 《太阳能学报》 北大核心 2025年第5期251-259,共9页
为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进C... 为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进Circle混沌映射、Levy飞行和t分布随机扰动的ICOA算法与麻雀搜索算法(SSA)、鲸鱼优化算法(WOA)和长鼻浣熊算法(COA)相比较,其在寻优能力、稳定性和收敛速度方面展现出优越性。随后,利用改进的ICOA算法优化XGBoost模型,有效解决了模型初始化参数的设置问题。实验结果显示,结合9维故障特征向量的ICOA-XGBoost模型在故障诊断精度上达到97.23%,优于其他对比模型,证实了所提方法的可行性和有效性。 展开更多
关键词 光伏阵列 故障诊断 改进长鼻浣熊算法 极端梯度提升
在线阅读 下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究 被引量:3
3
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进浣熊优化算法
在线阅读 下载PDF
基于随机森林与支持向量机的热轧带钢凸度加权预测模型研究
4
作者 周亚罗 李子轩 +2 位作者 张少川 刘文广 张瑞成 《矿冶工程》 CAS 北大核心 2024年第6期144-150,共7页
针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精... 针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精度。以某公司热轧1 580 mm生产线实测数据进行凸度预测仿真研究,随机森林与支持向量机加权预测模型的均方根误差为2.23μm,与随机森林模型、支持向量机模型预测精度进行比较,加权预测模型的精度分别提高了7.08%、2.62%。 展开更多
关键词 凸度预测 热轧带钢 支持向量机 长鼻浣熊算法 凸度 随机森林
在线阅读 下载PDF
基于漏磁场和ICOA-ResNet的变压器绕组早期故障诊断 被引量:18
5
作者 刘建锋 李志远 周亚茹 《电力系统保护与控制》 EI CSCD 北大核心 2024年第9期99-110,共12页
针对变压器绕组变形、轻微匝间短路故障诊断准确率低的问题,提出一种变压器绕组早期故障诊断方法。首先,利用ANSYS仿真软件建立与实验变压器相关参数一致的有限元模型,分析变压器在绕组发生各种故障的漏磁场分布规律,并根据这些规律选... 针对变压器绕组变形、轻微匝间短路故障诊断准确率低的问题,提出一种变压器绕组早期故障诊断方法。首先,利用ANSYS仿真软件建立与实验变压器相关参数一致的有限元模型,分析变压器在绕组发生各种故障的漏磁场分布规律,并根据这些规律选取合适的故障特征以及光纤漏磁场传感器安装位置。然后,通过改进长鼻浣熊优化算法(improved coati optimization algorithm,ICOA)寻找残差神经网络(ResNet)的最优超参数,以此参数构建ICOA-ResNet模型,将所得故障特征量输入模型进行故障诊断。最后,通过仿真数据和动模实验验证所提出的变压器绕组早期故障诊断模型的可行性。所提模型与支持向量机等4种模型相比,在绕组早期故障诊断上有更高的准确率,表明所提方法对变压器绕组变形、匝间短路故障诊断的有效性。 展开更多
关键词 变压器早期故障诊断 绕组变形 漏磁场 浣熊优化算法 残差神经网络 超参数优化
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
6
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部