期刊文献+
共找到3,403篇文章
< 1 2 171 >
每页显示 20 50 100
基于双向长短记忆网络和注意力机制的鸡白痢病音频检测
1
作者 漆海霞 张嘉琪 +2 位作者 江锦卓 冯榆森 陈日耀 《中国农机化学报》 北大核心 2025年第8期66-74,96,共10页
鸡白痢病是由鸡白痢沙门氏菌引起的一种传染性疾病,对养鸡业构成严重威胁。鉴于早期监测对预防疾病传播的重要性,提出一种基于深度学习的音频识别模型FlockVigil—Net,旨在实现对鸡白痢病的高效检测。首先,采用Smooth—HF降噪方法,结合... 鸡白痢病是由鸡白痢沙门氏菌引起的一种传染性疾病,对养鸡业构成严重威胁。鉴于早期监测对预防疾病传播的重要性,提出一种基于深度学习的音频识别模型FlockVigil—Net,旨在实现对鸡白痢病的高效检测。首先,采用Smooth—HF降噪方法,结合平滑机制谱减法和高通滤波器,从包含鸡叫声、行为噪声和环境噪声的复杂声音数据中提取清晰鸡叫声。随后,通过基于时间限制条件的端点检测算法分割鸡声音段,并计算鸡叫声的语谱图、FBANK和Mel频率倒谱系数(MFCC)3个特征,进一步形成特征合并图,为疾病识别提供丰富的声学信息。FlockVigil—Net模型融合卷积神经网络、双向长短记忆网络(BILSTM)和多头注意力机制,实现对鸡白痢病感染鸡只的高准确率识别。试验结果表明,在鸡白痢病确认后的第2~8天,模型识别率从86.53%提升至90.26%。与其他语音识别模型相比,FlockVigil—Net展现出更优的性能,为鸡白痢病的早期诊断提供一种高效、准确的音频检测方法。 展开更多
关键词 鸡病检测 双向长短记忆网络 注意力机制 谱减法
在线阅读 下载PDF
基于长短记忆网络的指数量化择时研究 被引量:7
2
作者 贺毅岳 高妮 +1 位作者 韩进博 茹少峰 《统计与决策》 CSSCI 北大核心 2020年第23期128-133,共6页
构建高精度股市指数预测模型进而设计高效的择时策略是量化投资领域的研究热点。文章在股市指数建模过程中引入自适应噪声完备集合经验模态分解(CEEMDAN),并结合长短记忆网络(LSTM)对复杂序列中长期依赖关系高效的建模能力,提出一种指... 构建高精度股市指数预测模型进而设计高效的择时策略是量化投资领域的研究热点。文章在股市指数建模过程中引入自适应噪声完备集合经验模态分解(CEEMDAN),并结合长短记忆网络(LSTM)对复杂序列中长期依赖关系高效的建模能力,提出一种指数预测建模方法C-LSTM。首先,运用CEEMDAN对指数进行量分预解测与值重获构得,指获数得的其整高体、低预频测分值量,与及现趋有势主项流;然预后测,方利法用L的ST对M比分实别验对表各明分C-量L进ST行M预具测有建更模低,的进预而测加误和差集和成滞各分后性;最后,构建基于C-LSTM预测的指数择时策略,并在沪深300指数上将其与均线择时、SVR择时进行对比实验,结果表明该策略凭借对指数的高精度预测大幅提升了择时信号的准确度,整体表现显著超越对照策略。 展开更多
关键词 量化择时 指数预测建模 自适应噪声完备集合经验模态分解 长短记忆网络 预测滞后性
在线阅读 下载PDF
基于深度长短记忆网络的汽轮机数据清洗 被引量:4
3
作者 许小刚 王志香 王惠杰 《热力发电》 CAS CSCD 北大核心 2023年第8期179-187,共9页
汽轮机运行过程会产生多样且大量数据。为适应大数据驱动及仿真建模对高质量数据的要求,高效的数据清洗十分必要。利用长短记忆层对于时序数据出色的非线性拟合能力搭建了汽轮机半监督数据清洗模型。模型选取机组的3个边界条件作为输入... 汽轮机运行过程会产生多样且大量数据。为适应大数据驱动及仿真建模对高质量数据的要求,高效的数据清洗十分必要。利用长短记忆层对于时序数据出色的非线性拟合能力搭建了汽轮机半监督数据清洗模型。模型选取机组的3个边界条件作为输入,对待清洗数据进行预测,根据预测值与实际值的残差完成异常值剔除,之后选用模型的预测值进行数据填充,保证数据的完整性。利用模型对某电厂650 MW机组进行数据清洗,并且为克服样本失衡给清洗模型指标选取带来的问题,对准确率进行了改进并将其作为清洗效果的衡量指标。结果表明:深度长短记忆网络的数据清洗模型改进准确率高于其他3种常见清洗方法,可有效识别数据是否异常,且可利用预测值进行数据填充,保证清洗前后数据量一致。 展开更多
关键词 长短记忆网络 深度学习 数据清洗 异常值 汽轮机
在线阅读 下载PDF
基于双向长短记忆网络的异常驾驶行为检测 被引量:11
4
作者 惠飞 郭静 +1 位作者 贾硕 邢美华 《计算机工程与应用》 CSCD 北大核心 2020年第24期116-122,共7页
异常驾驶行为的识别对交通安全起着至关重要的作用,准确识别异常驾驶行为能够显著提高驾驶安全。目前,针对车辆行驶过程中的异常驾驶行为,如急加速、急减速、突然左转或右转等的检测识别,主要采用视频监控或聚类的方法完成。在这两种方... 异常驾驶行为的识别对交通安全起着至关重要的作用,准确识别异常驾驶行为能够显著提高驾驶安全。目前,针对车辆行驶过程中的异常驾驶行为,如急加速、急减速、突然左转或右转等的检测识别,主要采用视频监控或聚类的方法完成。在这两种方法中,前者的实际效果受到应用场景的制约,而后者则不能针对具体的单个车辆进行驾驶行为识别。针对以上问题,使用一种基于双向长短记忆网络(Bi-LSTM)及全连接神经网络(FC)的拓展神经网络检测模型,该模型能有效利用行车数据在时间序列上发生突变时的特征,提高异常驾驶行识别准确率。将车辆行车数据处理后制作数据集并对模型进行训练,训练完成后的神经网络模型能够有效利用行车数据的时间序列特征,准确识别车辆的异常驾驶行为,准确率可达到98.08%。 展开更多
关键词 深度学习 驾驶行为识别 双向长短记忆网络
在线阅读 下载PDF
基于双向长短记忆网络和门控注意力的文本分类网络 被引量:1
5
作者 童根梅 朱敏 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期67-75,共9页
首先,提出构建双向的全连接结构用于更好提取上下文的信息;然后,利用双向的注意力机制将包含丰富文本特征的矩阵压缩成一个向量;最后,将双向的全连接结构和门控制结构相结合.通过实验验证了上述结构对于提升文本分类的准确率具有积极的... 首先,提出构建双向的全连接结构用于更好提取上下文的信息;然后,利用双向的注意力机制将包含丰富文本特征的矩阵压缩成一个向量;最后,将双向的全连接结构和门控制结构相结合.通过实验验证了上述结构对于提升文本分类的准确率具有积极的作用.将这3种结构和双向的循环网络进行结合,组成了所提出的文本分类模型.通过在7个常用的文本分类数据集(AG、DBP、Yelp.P、Yelp.F、Yah.A、Ama.F、Ama.P)上进行的实验,得到了具有竞争性的结果并且在其中5个数据集(AG、DBP、Yelp.P、Ama.F、Ama.P)上获得了较好的实验效果.通过实验表明,所提出的文本分类模型能显著降低分类错误率. 展开更多
关键词 文本分类 注意力机制 长短记忆网络
在线阅读 下载PDF
基于时间卷积和长短期记忆网络的短期云资源预测模型 被引量:2
6
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 时间卷积网络(TCN) 长短记忆网络(LSTM)
在线阅读 下载PDF
基于改进长短期记忆网络模型的水库库区水温模拟 被引量:1
7
作者 郑铁刚 吴茂喜 +3 位作者 张迪 金瑾 林俊强 孙双科 《农业工程学报》 北大核心 2025年第3期144-153,共10页
水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中... 水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中嵌入相关分析模块自动筛选模型的特征输入,并优化输出维度,提出了一种改进的LSTM模型,并在溪洛渡水库工程开展了模型应用研究,结果表明:1)改进LSTM模型的均方根误差最大值为0.63,纳什效率系数最小值为0.96,表明模型整体性能较好,能够精准地捕捉数据中的长期依赖关系;2)基于改进LSTM模型的库区水温分布预测值和环境流体动力学模型(environmental fluid dynamics code,EFDC)模拟值随时间的量值分布及变化规律基本一致,两者的库区表层年际误差值为-1.19~1.04℃,中层年际误差值为-1.06~1.68℃,底层年际误差值为-1.28~1.07℃,年际水温最大相对误差为8.3%;3)相较于EFDC模型多天的模拟时长,改进模型的计算时间缩短至几百秒,计算效率大幅提升,实现了水温分布的快速、实时精准预测。该研究通过改进LSTM模型,实现了深水水库垂向水温的高效预测,研究结果可为分层取水设施的优化调控提供技术支撑。 展开更多
关键词 水温 模拟 改进的长短网络记忆模型 水温分布 相关性分析 水温预测 人工智能学习
在线阅读 下载PDF
基于双向长短时记忆网络和自注意力机制的心音分类
8
作者 卢官明 李齐健 +4 位作者 卢峻禾 戚继荣 赵宇航 王洋 魏金生 《数据采集与处理》 北大核心 2025年第2期456-468,共13页
心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进... 心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进行分帧处理,提取每帧心音信号的梅尔频率倒谱系数(Mel⁃frequency cepstral coefficients,MFCC)特征;将MFCC特征序列输入Bi⁃LSTM网络,利用Bi⁃LSTM网络提取心音信号的时域上下文特征;通过自注意力机制动态调整Bi⁃LSTM网络各时间步输出特征的权重,得到有利于分类的更具鉴别性的心音特征;通过Softmax分类器实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016心音数据集上对所提出的算法使用10折交叉验证法进行了评估,得到0.9425的灵敏度、0.9437的特异度、0.8367的精度、0.8865的F1得分和0.9434的准确率,优于对比的典型算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,具有潜在的临床应用前景。 展开更多
关键词 心音分类 梅尔频率倒谱系数 双向长短记忆网络 自注意力机制
在线阅读 下载PDF
基于生成对抗网络与长短时记忆网络的机器人书法系统
9
作者 韩浩 刘佳 《西南大学学报(自然科学版)》 北大核心 2025年第7期231-244,共14页
机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(L... 机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(LSTM)的机器人书法系统。该书写系统将汉字笔画图像转换为轨迹序列,无须使用笔画轨迹编码信息,克服了传统书写轨迹信息缺失的问题。首先构建了一个生成对抗架构,其中LSTM网络与鉴别器网络结合,以减小训练数据集的规模。然后,LSTM网络通过多个循环逐步生成新的轨迹点,使机器人能够逐渐完成整个汉字书法的书写。最后,利用鉴别器网络评估LSTM网络输出结果来辅助机器人找到最佳策略,并引入强化学习算法来进一步提高系统性能。实验结果证明,所提出的系统能够高效产生高质量的汉字书法。 展开更多
关键词 生成对抗网络 长短记忆网络 强化学习 汉字书法 机器人书法系统
在线阅读 下载PDF
一种基于长短期记忆网络的雷达目标跟踪算法
10
作者 张正文 向严谨 廖桂生 《现代雷达》 北大核心 2025年第2期83-90,共8页
在道路交通系统中,毫米波雷达以其分辨率高和抗干扰能力强的特点成为了热门的目标运动信息采集传感器。传统的目标跟踪算法在雷达观测信息丢失的情况下会出现跟踪误差较大或无法进行目标跟踪的现象。针对这一问题,文中提出了一种基于长... 在道路交通系统中,毫米波雷达以其分辨率高和抗干扰能力强的特点成为了热门的目标运动信息采集传感器。传统的目标跟踪算法在雷达观测信息丢失的情况下会出现跟踪误差较大或无法进行目标跟踪的现象。针对这一问题,文中提出了一种基于长短期记忆(LSTM)网络的雷达目标跟踪算法,在雷达观测值正常时,利用LSTM网络的记忆函数,对雷达的观测值进行训练并预测;当雷达观测值丢失时,利用LSTM网络为扩展卡尔曼算法提供观测值的预测值,以保证扩展卡尔曼算法能够继续对目标进行跟踪,达到降低目标跟踪误差的目的。文中通过雷达实测数据对LSTM网络进行训练,并针对直线和曲线两种运动状态进行了仿真验证分析,仿真结果表明,提出的目标跟踪算法在雷达的观测值丢失的情况下仍然可以对目标进行跟踪,并有效地降低了目标跟踪算法的误差。 展开更多
关键词 毫米波雷达 目标跟踪 长短记忆网络 扩展卡尔曼滤波 非线性滤波
在线阅读 下载PDF
长短期记忆网络在隧道火灾实时致灾态势预测中应用研究
11
作者 贾进章 陈佳琦 陈怡诺 《安全与环境学报》 北大核心 2025年第4期1298-1309,共12页
针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预... 针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预测。首先,通过1∶20小面积火灾试验收集不同工况下的温度数据,然后,采用LSTM模型从试验火灾数据库中学习、训练,并进行不同火源类型测试,发现该算法模型可以很好地预测隧道内温度分布。对模型的预测能力进行测试,测试结果表明,预测结果精度高,相对误差在±10%内。与反向传播神经网络(Back Propagation Neural Network,BPNN)模型进行比较,测试误差均值降低3.85百分点,对比效果明显,满足隧道火灾实时态势检测需要,为隧道火灾事故的应急救援建立了较为新颖的智能预测方法。 展开更多
关键词 安全工程 隧道火灾 长短记忆网络 烟气温度 实时预测
在线阅读 下载PDF
基于长短期记忆网络的区间不确定性动态载荷识别方法
12
作者 王磊 程辽辽 +2 位作者 胡举喜 顾凯旋 刘英良 《应用数学和力学》 北大核心 2025年第8期959-972,共14页
针对传统神经网络在处理时间依赖性动态过程和含噪数据时的不稳定性问题,提出了一种基于长短期记忆网络动态力重构方法.测量响应信号经噪声污染后,被归一化为输入变量;而归一化的动态载荷则作为输出变量.长短期记忆网络的实现方法被采用... 针对传统神经网络在处理时间依赖性动态过程和含噪数据时的不稳定性问题,提出了一种基于长短期记忆网络动态力重构方法.测量响应信号经噪声污染后,被归一化为输入变量;而归一化的动态载荷则作为输出变量.长短期记忆网络的实现方法被采用.为了提高网络的泛化能力,不同类型的动力响应和原始载荷被定义为每个时刻的样本结构.考虑区间不确定性,在传统配点法的基础上调整配点策略得到逐维法,在研究某一维度不确定性变量时固定其他维度,可以高精度地解决区间变量相互独立的不确定性载荷识别问题.最后,采用数值算例与传统神经网络(BP神经网络)对比,表征长短期记忆网络在含噪数据的处理上更为稳定,设计试验证实了对于时间依赖性的数据,该方法的有效性和可行性. 展开更多
关键词 长短记忆网络 逐维法 载荷识别 区间不确定性
在线阅读 下载PDF
基于卷积神经网络和长短期记忆网络的轴向柱塞泵健康状态评估
13
作者 魏娜莎 刘江锋 +1 位作者 丁泽鹏 田志毅 《科学技术与工程》 北大核心 2025年第21期8889-8897,共9页
柱塞泵是液压系统重要的动力转换部件之一,其性能好坏直接影响液压系统的安全和稳定。为准确对柱塞泵的运行状态进行评估,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory netwo... 柱塞泵是液压系统重要的动力转换部件之一,其性能好坏直接影响液压系统的安全和稳定。为准确对柱塞泵的运行状态进行评估,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory network,LSTM)结合的柱塞泵健康状态评估方法,引入遗传算法对神经网络的参数进行优化。采集柱塞泵不同运行时刻的振动信号,利用小波包对振动信号进行能量特征提取,结合信号时频域特征,构建柱塞泵健康状态特征数据集,由CNN-LSTM方法进行健康状态识别分类,并通过样本熵评估分类结果。为验证该健康评估方法的有效性,将其应用到柱塞泵的试验测试中,结果表明:该方法的识别准确率达到了99%,能够有效提高对柱塞泵健康状态评估的准确性。 展开更多
关键词 轴向柱塞泵 卷积神经网络 长短记忆网络 健康评估
在线阅读 下载PDF
基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波
14
作者 陈辉 胡荣海 席磊 《兰州理工大学学报》 北大核心 2025年第4期88-94,F0003,共8页
为了解决复杂非线性目标跟踪中状态空间模型参数不准确、滤波性能变差的问题,提出一种基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波.首先,在贝叶斯滤波框架下用长短期记忆神经网络认知卡尔曼增益这一组件,以数据驱动的方... 为了解决复杂非线性目标跟踪中状态空间模型参数不准确、滤波性能变差的问题,提出一种基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波.首先,在贝叶斯滤波框架下用长短期记忆神经网络认知卡尔曼增益这一组件,以数据驱动的方式逼近最优卡尔曼增益,不需要完全了解底层模型参数,可以在具有部分信息非线性状态下执行扩展卡尔曼滤波.其次,使用一种无监督离线训练算法,不需要提供真实数据,而是通过滤波器的可解释性,根据预测下一时刻观测的内部特征进行无监督损失函数计算.通过仿真验证表明,在非线性模型中的参数不准确时,提出的滤波器性能优于传统滤波器. 展开更多
关键词 扩展卡尔曼滤波 长短记忆神经网络 深度学习 数据驱动
在线阅读 下载PDF
一种基于频域内推理计算的长短期记忆神经网络硬件加速器设计
15
作者 靳松 陈诗琪 《计算机学报》 北大核心 2025年第8期1781-1794,共14页
长短期记忆神经网络(Long Short-Term Memory,LSTM)可以捕捉到序列数据间长距离的依赖关系,因此在时间序列预测、自然语言分析和语音识别等领域得到广泛应用。然而,LSTM网络独特的门控机制和状态更新过程导致其推理计算的复杂度较高,参... 长短期记忆神经网络(Long Short-Term Memory,LSTM)可以捕捉到序列数据间长距离的依赖关系,因此在时间序列预测、自然语言分析和语音识别等领域得到广泛应用。然而,LSTM网络独特的门控机制和状态更新过程导致其推理计算的复杂度较高,参数量较大,对其在资源受限的边缘设备上的部署形成挑战。本文提出一种基于频域内推理计算的长短期记忆神经网络硬件加速器设计。采用循环分块矩阵对网络的权重参数进行压缩存储,结合快速傅里叶变换(Fast Fourier Transform,FFT)和频域激活函数实现频域内网络推理计算,避免在处理不同时间样本时频繁的时域-频域切换开销。采用坐标旋转数字计算机算法(Coordinate Rotation Digital Computer,CORDIC)替换频域内的乘法运算和超函数计算,实现LSTM的低功耗硬件部署。提出的硬件加速器在PYNQ-Z2开发板上进行了原型实现。面向开源时间序列数据集的实验结果表明,加速器实现了63.6μs的网络平均推理延迟,功耗1.743 W,相比时域LSTM推理计算延迟降低了44.2%,功耗降低6.4%。同时,BRAM和FIFO的资源占用率仅为5%和2%,相比时域LSTM推理计算分别降低了83%和91.2%。 展开更多
关键词 长短记忆神经网络 分块循环矩阵 坐标旋转数字计算机 频域推理计算 快速傅里叶变换
在线阅读 下载PDF
基于长短期记忆网络的动力电池组温度场时空建模 被引量:1
16
作者 韦鹏 舒小杨 +2 位作者 朱文超 杨扬 谢长君 《电工技术学报》 北大核心 2025年第13期4306-4315,共10页
动力电池组温度场用复杂的偏微分方程来描述,由于其中大量的参数未知,且很多模型参数表现出较强的时变性,传统基于物理建模方法在实现动力电池组温度场在线建模方面难度较大。基于深度学习的方法虽然不依赖物理模型,然而在训练过程中需... 动力电池组温度场用复杂的偏微分方程来描述,由于其中大量的参数未知,且很多模型参数表现出较强的时变性,传统基于物理建模方法在实现动力电池组温度场在线建模方面难度较大。基于深度学习的方法虽然不依赖物理模型,然而在训练过程中需要大量的实验数据,模型训练时间较长,温度场预测的实时性较差。针对以上问题,该文提出一种基于长短期记忆网络的动力电池组温度场时空建模。首先利用时空分离方法提取离线条件下的空间特征和时间特征。空间特征在增量学习的帮助下不断进行更新,长短期记忆(LSTM)网络用于时间动力学的建模。最后,将更新后的空间特征和时间模型进行整合,得到动力电池组温度场的预测模型。在一个由24节电池单体组成的动力电池包上对所提出的方法进行验证,结果表明,无论在正常条件下还是有气流干扰条件下,所提方法都能对动力电池包的温度场进行准确预测。在有气流干扰下,所提方法的单点温度预测误差小于0.07℃,在测试集上的方均根误差为0.0147℃. 展开更多
关键词 动力电池组 时空建模 长短记忆网络 特征提取
在线阅读 下载PDF
区域化长短期记忆神经网络(LSTM)洪水预报模型研究 被引量:2
17
作者 叶可佳 梁忠民 +4 位作者 陈红雨 钱名开 胡义明 王军 李彬权 《湖泊科学》 北大核心 2025年第2期651-659,共9页
针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一... 针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一数据集,扩大样本数量,为建立乏资料流域洪水预报模型提供了可能。本文选择胶东半岛作为研究区进行应用研究。为验证区域化模型在不同场景中的应用效果,设计了预报流域数据不参与建模,而仅根据区域内其他流域资料建模(区域化模型Ⅰ),以及预报流域的部分数据参与建模(区域化模型Ⅱ)两种情景;此外,选取仅根据预报流域数据训练的单流域模型作为基准模型进行对比分析。结果表明,对本次研究的水文资料短缺流域,两种区域化模型均取得了较好效果,且都优于单流域模型。相较而言,考虑了预报流域数据的区域化模型精度更高,说明在区域化LSTM构建中融入预报流域的数据,可进一步提升区域化模型的精度。研究成果可为乏资料地区的洪水预报提供参考。 展开更多
关键词 长短记忆神经网络 洪水预报 区域化模型 水文气候相似区 乏资料流域
在线阅读 下载PDF
基于长短期记忆网络模型的联邦学习居民负荷预测 被引量:2
18
作者 朱嵩阳 张歌 +1 位作者 贾愉靖 白晓清 《现代电力》 北大核心 2025年第1期129-136,共8页
居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信... 居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信成本增加,并引发信息安全问题。基于联邦学习框架,采用长短期记忆网络对居民负荷预测方法进行研究。利用真实居民负荷数据进行仿真计算分析,结果表明,基于联邦学习的居民负荷预测准确率和计算效率优于集中式。此外,将FedAvg、FedAdagrad、FedYogi三种联邦学习策略进行比较,采用具有自适应优化功能的FedAdagrad联邦学习策略对居民负荷预测的准确率更高,收敛性更强。 展开更多
关键词 居民用户 集中式 联邦学习 负荷预测 长短记忆网络
在线阅读 下载PDF
基于长短期记忆神经网络的多级涡轮过渡态叶尖间隙预测 被引量:2
19
作者 杨超 毛军逵 +3 位作者 杨悦 王飞龙 邵发宁 毕帅 《推进技术》 北大核心 2025年第2期248-257,共10页
为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶... 为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶尖间隙高效、高精度预测。在BOMTL-LSTM模型中,通过高效的长短期记忆神经网络(Long Short-Term Memory,LSTM)模型对基于有限元分析方法得到的高精度过渡态叶尖间隙时序信息进行学习,并在LSTM模型的基础上,引入多任务学习(Multi-Task Learning,MTL)用于多个叶尖间隙预测任务之间的信息共享,以缓解高维度变量复杂空间耦合作用的影响。同时,结合贝叶斯优化(Bayesian Optimization,BO)对神经网络模型超参数进行全局自动优化,提升预测精度与训练效率。结果表明,相比于传统计算模型,BO-MTL-LSTM模型在同等预测精度下,能够在秒量级时间内完成一个完整发动机历程的多级涡轮过渡态叶尖间隙的预测。此外,相比常规的BO-LSTM模型,BO-MTL-LSTM模型的均方根误差和平均绝对误差分别降低了84.39%和89.21%,模型训练时间缩短了30%,该模型可以实现多级叶尖间隙的高效、精准预测。 展开更多
关键词 多级涡轮 叶尖间隙预测 多任务学习 长短记忆神经网络 贝叶斯优化
在线阅读 下载PDF
基于树状结构Parzen估计器优化长短期记忆神经网络的燃煤机组NO_(x)生成浓度预测 被引量:1
20
作者 陈东升 梁中荣 +3 位作者 郑国 何荣强 屈可扬 甘云华 《中国电机工程学报》 北大核心 2025年第7期2710-2718,I0022,共10页
建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升N... 建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升NO_(x)预测模型精度与泛化性。该文提出一种基于树状结构Parzen估计器优化长短期记忆(tree-structure parzen estimator optimized long short-term memory neural network,TPE-LSTM)神经网络的NO_(x)生成浓度预测模型。基于某330 MW燃煤机组的历史运行数据,获取NO_(x)生成相关变量参数,将模型结构参数与NO_(x)相关变量参数的时间序列窗口长度以及主成分数量相互耦合,组成一类新的超参数;通过优化改进后的超参数取值,构建基于长短期记忆(long short-term memory,LSTM)神经网络的NO_(x)生成浓度预测模型;将所提出的超参数优化后的NO_(x)预测模型与基于未优化的LSTM模型、采用粒子群优化的LSTM(particle swarm optimization optimized LSTM,PSO-LSTM)模型对比,预测结果表明,TPE-LSTM预测模型具有较好的模型精度与泛化能力。 展开更多
关键词 燃煤锅炉 NO_(x)生成浓度预测 树状结构Parzen估计器 超参数优化 长短记忆神经网络
在线阅读 下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部