选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台...选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)和归一化均方根误差(NRMSE)的平均值为1.139′和0.040,H分量的RMSE和NRMSE的平均值为11.85 n T和0.086,Z分量的RMSE和NRMSE的平均值为15.10 n T和0.026;LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 n T/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 n T/a,较线性外推法提高了47%,较二次外推法提高了57%。展开更多
文摘选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)和归一化均方根误差(NRMSE)的平均值为1.139′和0.040,H分量的RMSE和NRMSE的平均值为11.85 n T和0.086,Z分量的RMSE和NRMSE的平均值为15.10 n T和0.026;LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 n T/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 n T/a,较线性外推法提高了47%,较二次外推法提高了57%。