期刊文献+
共找到2,041篇文章
< 1 2 103 >
每页显示 20 50 100
区域化长短期记忆神经网络(LSTM)洪水预报模型研究 被引量:2
1
作者 叶可佳 梁忠民 +4 位作者 陈红雨 钱名开 胡义明 王军 李彬权 《湖泊科学》 北大核心 2025年第2期651-659,共9页
针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一... 针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一数据集,扩大样本数量,为建立乏资料流域洪水预报模型提供了可能。本文选择胶东半岛作为研究区进行应用研究。为验证区域化模型在不同场景中的应用效果,设计了预报流域数据不参与建模,而仅根据区域内其他流域资料建模(区域化模型Ⅰ),以及预报流域的部分数据参与建模(区域化模型Ⅱ)两种情景;此外,选取仅根据预报流域数据训练的单流域模型作为基准模型进行对比分析。结果表明,对本次研究的水文资料短缺流域,两种区域化模型均取得了较好效果,且都优于单流域模型。相较而言,考虑了预报流域数据的区域化模型精度更高,说明在区域化LSTM构建中融入预报流域的数据,可进一步提升区域化模型的精度。研究成果可为乏资料地区的洪水预报提供参考。 展开更多
关键词 长短记忆神经网络 洪水预报 区域化模型 水文气候相似区 乏资料流域
在线阅读 下载PDF
基于卷积神经网络和长短期记忆网络的轴向柱塞泵健康状态评估
2
作者 魏娜莎 刘江锋 +1 位作者 丁泽鹏 田志毅 《科学技术与工程》 北大核心 2025年第21期8889-8897,共9页
柱塞泵是液压系统重要的动力转换部件之一,其性能好坏直接影响液压系统的安全和稳定。为准确对柱塞泵的运行状态进行评估,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory netwo... 柱塞泵是液压系统重要的动力转换部件之一,其性能好坏直接影响液压系统的安全和稳定。为准确对柱塞泵的运行状态进行评估,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory network,LSTM)结合的柱塞泵健康状态评估方法,引入遗传算法对神经网络的参数进行优化。采集柱塞泵不同运行时刻的振动信号,利用小波包对振动信号进行能量特征提取,结合信号时频域特征,构建柱塞泵健康状态特征数据集,由CNN-LSTM方法进行健康状态识别分类,并通过样本熵评估分类结果。为验证该健康评估方法的有效性,将其应用到柱塞泵的试验测试中,结果表明:该方法的识别准确率达到了99%,能够有效提高对柱塞泵健康状态评估的准确性。 展开更多
关键词 轴向柱塞泵 卷积神经网络 长短记忆网络 健康评估
在线阅读 下载PDF
基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波
3
作者 陈辉 胡荣海 席磊 《兰州理工大学学报》 北大核心 2025年第4期88-94,F0003,共8页
为了解决复杂非线性目标跟踪中状态空间模型参数不准确、滤波性能变差的问题,提出一种基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波.首先,在贝叶斯滤波框架下用长短期记忆神经网络认知卡尔曼增益这一组件,以数据驱动的方... 为了解决复杂非线性目标跟踪中状态空间模型参数不准确、滤波性能变差的问题,提出一种基于长短期记忆神经网络局部认知结构的最优非线性卡尔曼滤波.首先,在贝叶斯滤波框架下用长短期记忆神经网络认知卡尔曼增益这一组件,以数据驱动的方式逼近最优卡尔曼增益,不需要完全了解底层模型参数,可以在具有部分信息非线性状态下执行扩展卡尔曼滤波.其次,使用一种无监督离线训练算法,不需要提供真实数据,而是通过滤波器的可解释性,根据预测下一时刻观测的内部特征进行无监督损失函数计算.通过仿真验证表明,在非线性模型中的参数不准确时,提出的滤波器性能优于传统滤波器. 展开更多
关键词 扩展卡尔曼滤波 长短记忆神经网络 深度学习 数据驱动
在线阅读 下载PDF
一种基于频域内推理计算的长短期记忆神经网络硬件加速器设计
4
作者 靳松 陈诗琪 《计算机学报》 北大核心 2025年第8期1781-1794,共14页
长短期记忆神经网络(Long Short-Term Memory,LSTM)可以捕捉到序列数据间长距离的依赖关系,因此在时间序列预测、自然语言分析和语音识别等领域得到广泛应用。然而,LSTM网络独特的门控机制和状态更新过程导致其推理计算的复杂度较高,参... 长短期记忆神经网络(Long Short-Term Memory,LSTM)可以捕捉到序列数据间长距离的依赖关系,因此在时间序列预测、自然语言分析和语音识别等领域得到广泛应用。然而,LSTM网络独特的门控机制和状态更新过程导致其推理计算的复杂度较高,参数量较大,对其在资源受限的边缘设备上的部署形成挑战。本文提出一种基于频域内推理计算的长短期记忆神经网络硬件加速器设计。采用循环分块矩阵对网络的权重参数进行压缩存储,结合快速傅里叶变换(Fast Fourier Transform,FFT)和频域激活函数实现频域内网络推理计算,避免在处理不同时间样本时频繁的时域-频域切换开销。采用坐标旋转数字计算机算法(Coordinate Rotation Digital Computer,CORDIC)替换频域内的乘法运算和超函数计算,实现LSTM的低功耗硬件部署。提出的硬件加速器在PYNQ-Z2开发板上进行了原型实现。面向开源时间序列数据集的实验结果表明,加速器实现了63.6μs的网络平均推理延迟,功耗1.743 W,相比时域LSTM推理计算延迟降低了44.2%,功耗降低6.4%。同时,BRAM和FIFO的资源占用率仅为5%和2%,相比时域LSTM推理计算分别降低了83%和91.2%。 展开更多
关键词 长短记忆神经网络 分块循环矩阵 坐标旋转数字计算机 频域推理计算 快速傅里叶变换
在线阅读 下载PDF
基于树状结构Parzen估计器优化长短期记忆神经网络的燃煤机组NO_(x)生成浓度预测 被引量:2
5
作者 陈东升 梁中荣 +3 位作者 郑国 何荣强 屈可扬 甘云华 《中国电机工程学报》 北大核心 2025年第7期2710-2718,I0022,共10页
建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升N... 建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升NO_(x)预测模型精度与泛化性。该文提出一种基于树状结构Parzen估计器优化长短期记忆(tree-structure parzen estimator optimized long short-term memory neural network,TPE-LSTM)神经网络的NO_(x)生成浓度预测模型。基于某330 MW燃煤机组的历史运行数据,获取NO_(x)生成相关变量参数,将模型结构参数与NO_(x)相关变量参数的时间序列窗口长度以及主成分数量相互耦合,组成一类新的超参数;通过优化改进后的超参数取值,构建基于长短期记忆(long short-term memory,LSTM)神经网络的NO_(x)生成浓度预测模型;将所提出的超参数优化后的NO_(x)预测模型与基于未优化的LSTM模型、采用粒子群优化的LSTM(particle swarm optimization optimized LSTM,PSO-LSTM)模型对比,预测结果表明,TPE-LSTM预测模型具有较好的模型精度与泛化能力。 展开更多
关键词 燃煤锅炉 NO_(x)生成浓度预测 树状结构Parzen估计器 超参数优化 长短记忆神经网络
在线阅读 下载PDF
基于长短期记忆神经网络的多级涡轮过渡态叶尖间隙预测 被引量:2
6
作者 杨超 毛军逵 +3 位作者 杨悦 王飞龙 邵发宁 毕帅 《推进技术》 北大核心 2025年第2期248-257,共10页
为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶... 为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶尖间隙高效、高精度预测。在BOMTL-LSTM模型中,通过高效的长短期记忆神经网络(Long Short-Term Memory,LSTM)模型对基于有限元分析方法得到的高精度过渡态叶尖间隙时序信息进行学习,并在LSTM模型的基础上,引入多任务学习(Multi-Task Learning,MTL)用于多个叶尖间隙预测任务之间的信息共享,以缓解高维度变量复杂空间耦合作用的影响。同时,结合贝叶斯优化(Bayesian Optimization,BO)对神经网络模型超参数进行全局自动优化,提升预测精度与训练效率。结果表明,相比于传统计算模型,BO-MTL-LSTM模型在同等预测精度下,能够在秒量级时间内完成一个完整发动机历程的多级涡轮过渡态叶尖间隙的预测。此外,相比常规的BO-LSTM模型,BO-MTL-LSTM模型的均方根误差和平均绝对误差分别降低了84.39%和89.21%,模型训练时间缩短了30%,该模型可以实现多级叶尖间隙的高效、精准预测。 展开更多
关键词 多级涡轮 叶尖间隙预测 多任务学习 长短记忆神经网络 贝叶斯优化
在线阅读 下载PDF
采用堆叠长短期记忆神经网络的水质连续预测方法 被引量:1
7
作者 张建奇 冯乐源 +1 位作者 李东鹤 杨清宇 《西安交通大学学报》 北大核心 2025年第6期93-102,共10页
针对水环境监测中的水质参数异常、预测精度低等问题,提出了一种基于堆叠长短期记忆神经网络(SLSTM)的水质参数预测模型,以解决时序数据不完整带来的挑战。首先,分析了缺失或异常的水质数据时序特征,并基于堆叠长短期记忆网络设计了水... 针对水环境监测中的水质参数异常、预测精度低等问题,提出了一种基于堆叠长短期记忆神经网络(SLSTM)的水质参数预测模型,以解决时序数据不完整带来的挑战。首先,分析了缺失或异常的水质数据时序特征,并基于堆叠长短期记忆网络设计了水质预测的深度神经网络模型;其次,采用逐点预测和多步预测方法对所提模型进行对比实验验证;最后,为了量化模型的预测性能,引入平均绝对百分比误差(MAPE)和均方根误差(RMSE)两类指标,评估SLSTM模型相对于支持向量回归(SVR)和自回归综合移动平均(ARIMA)模型的优越性。实验结果表明,在短期(24h)和长期(48h)水质余氯预测中,SLSTM的预测精度显著高于其他两类模型:在多步预测中,SLSTM的MAPE至少比SVR降低了9.15%;逐点预测中,SLSTM的RMSE至少比SVR降低了31.25%。此外,相较于ARIMA模型,SLSTM能够更有效地捕捉水质数据的非线性变化趋势,提升预测稳定性。研究不仅验证了SLSTM在水质参数预测中的有效性,还为水环境监测领域提供了新的视角和工具。 展开更多
关键词 余氯预测 水质参数预测 数据时序 长短记忆神经网络
在线阅读 下载PDF
基于长短时记忆神经网络的中国大陆地区地磁场长期变化预测方法
8
作者 李江 陈斌 《地震学报》 北大核心 2025年第3期390-409,共20页
选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台... 选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)和归一化均方根误差(NRMSE)的平均值为1.139′和0.040,H分量的RMSE和NRMSE的平均值为11.85 n T和0.086,Z分量的RMSE和NRMSE的平均值为15.10 n T和0.026;LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 n T/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 n T/a,较线性外推法提高了47%,较二次外推法提高了57%。 展开更多
关键词 地球磁场 长短记忆(lstm) 长期变化 深度学习 中国大陆
在线阅读 下载PDF
基于改进长短记忆神经网络的深层致密储层裂缝测井识别
9
作者 张涛 李艳萍 +2 位作者 李泽凯 刘东成 王静 《地学前缘》 北大核心 2025年第5期456-465,共10页
辽河坳陷中央凸起深层致密基岩潜山发育裂缝性油气储层,资源潜力巨大,但埋深大、岩性多样,裂缝与测井参数间映射关系复杂,裂缝测井识别多解性强,准确率低。针对以上问题,本文对长短记忆神经网络算法(LSTM)进行改进用于深层潜山地层裂缝... 辽河坳陷中央凸起深层致密基岩潜山发育裂缝性油气储层,资源潜力巨大,但埋深大、岩性多样,裂缝与测井参数间映射关系复杂,裂缝测井识别多解性强,准确率低。针对以上问题,本文对长短记忆神经网络算法(LSTM)进行改进用于深层潜山地层裂缝测井识别,在双层LSTM之间增加Dropout层,通过正则化防止过拟合,引入采用高斯核函数的最小二乘支持向量机(LSSVM)将LSTM中的Dense层和用于分类的Softmax函数进行替换,直接对LSTM层所提取的特征成分进行分类预测,在保留了长短记忆神经网络算法对测井曲线的序列性学习优势基础上,有效提升了分类预测效率和准确性,避免了裂缝特征信息的丢失以及对小样本训练数据的过度拟合,增强了算法的快速收敛能力。结果显示,测试集准确率达91.56%,识别准确率高于支持向量机和标准长短记忆神经网络模型,为深层复杂岩性基岩潜山储层裂缝识别提供了高效解决方案。 展开更多
关键词 深层 基岩潜山 改进长短记忆神经网络 裂缝识别
在线阅读 下载PDF
基于粒子群优化长短期记忆神经网络的电池容量估计
10
作者 王科 彭晶 +2 位作者 杜宇维 杨骏 巫春玲 《科学技术与工程》 北大核心 2025年第29期12511-12518,共8页
针对锂离子电池在老化和衰退过程中容量的非线性和非平稳特性问题,结合充放电特性的变化,提出了一种基于粒子群优化长短期记忆神经网络(particle swarm optimization long short-term memory neural network,PSO-LSTM)的电池容量预测模... 针对锂离子电池在老化和衰退过程中容量的非线性和非平稳特性问题,结合充放电特性的变化,提出了一种基于粒子群优化长短期记忆神经网络(particle swarm optimization long short-term memory neural network,PSO-LSTM)的电池容量预测模型。该方法详细描述了锂离子电池充放电过程中的关键环节,包括恒流充电时间、恒压充电时间及放电过程中的电压变化,并明确了这些特征与老化之间的相关性。通过数据挖掘技术,系统地提取了这些特征在电池生命周期中的变化规律,从而为电池性能评估提供了可靠的基础。为验证所提出方法的有效性,进行了多组实验,通过与传统预测模型进行比较,实验结果表明,该模型在容量估计中的最大均方根误差(root mean squared error,RMSE)仅为2.4176,最大平均绝对误差(mean absolute error,MAE)为1.9843,展示了良好的适应性与鲁棒性,能够有效反映电池的实际性能衰退情况,为电池管理系统的优化提供了重要的理论支持。 展开更多
关键词 锂离子电池 容量估计 粒子群优化算法 长短记忆神经网络
在线阅读 下载PDF
基于图卷积神经网络和长短时记忆网络的输电网宽频振荡定位
11
作者 李雨攸 顾洁 +1 位作者 吴佳庆 金之俭 《广东电力》 北大核心 2025年第5期54-64,共11页
新能源发电机组大规模接入电网引发的宽频振荡给电网稳定运行带来了隐患,快速准确的振荡源定位是消除振荡、保障系统安全稳定运行的重要基础。为提升子站与主站之间数据传输效率、解决信息缺失等问题,本文提出一种基于图卷积神经网络与... 新能源发电机组大规模接入电网引发的宽频振荡给电网稳定运行带来了隐患,快速准确的振荡源定位是消除振荡、保障系统安全稳定运行的重要基础。为提升子站与主站之间数据传输效率、解决信息缺失等问题,本文提出一种基于图卷积神经网络与长短时记忆网络结合的输电网宽频振荡定位模型。首先通过对电网运行数据进行高频采样,并经压缩感知稀疏化处理后得到压缩振荡数据;进一步将输电网拓扑结构和部分节点的振荡采样数据相结合,通过基于图卷积神经网络的全局振荡信息生成模型补全未知节点信息,形成节点特征矩阵;最后根据全网各节点振荡特征矩阵,采用长短时记忆网络算法实现振荡源定位。基于含直驱风电机组的四机两区域仿真模型验证,结果表明GCN补全数据的均方根误差(0.0319)显著优于对比模型,且所提模型定位准确率达96.93%,尤其对风电机组振荡源定位精度达99%,显著高于GCN-SVM(94.22%)等基准方法,证实该方法在部分可观条件下能有效融合拓扑与时空特征,为高比例新能源电网安全稳定运行提供可靠技术支撑。运用MATLAB/Simulink制作样本数据集,通过算例仿真验证了文中所提出的宽频振荡定位模型的可行性与有效性。 展开更多
关键词 宽频振荡 振荡源定位 振荡信息生成模型 图卷积神经网络 长短记忆网络 特征矩阵
在线阅读 下载PDF
基于长短时记忆神经网络的降压变换器自适应控制
12
作者 贺伟 严佳成 +1 位作者 周旺平 李洪杰 《控制理论与应用》 北大核心 2025年第9期1838-1848,共11页
基于深度强化学习的无模型控制方法将避免系统建模的复杂过程,回避较难处理的非线性系统控制问题,且具有优良的鲁棒性.本文针对带恒功率负载的直流降压变换器系统,基于长短时记忆神经网络提出一种无模型自适应控制策略.首先,定义一种由... 基于深度强化学习的无模型控制方法将避免系统建模的复杂过程,回避较难处理的非线性系统控制问题,且具有优良的鲁棒性.本文针对带恒功率负载的直流降压变换器系统,基于长短时记忆神经网络提出一种无模型自适应控制策略.首先,定义一种由连续电压误差信号组成的状态空间,此状态空间将误差信号构建为控制算法的输入状态;其次,基于参考电压构建离散动作空间并设计奖励函数,动作空间将算法输出转换为占空比,并基于被控系统下一时刻状态给予一个奖励信号评判算法控制效果;然后,将长短时记忆神经网络作为双深度Q网络的状态动作价值函数估计器,计算输入状态下各个决策的Q值,并选取Q值最高的决策作为最优决策输出;最后,对本方法控制下的带恒功率负载的直流降压变换器系统进行仿真和实验研究.实验结果证明,该控制策略具有优良的跟踪给定性能,当存在外界扰动时,该控制策略作用下的系统具有良好的鲁棒性. 展开更多
关键词 恒功率负载 直流降压变换器 长短记忆神经网络 双深度Q网络 深度强化学习
在线阅读 下载PDF
采用长短期记忆神经网络的压电式六维力/力矩传感器解耦算法
13
作者 亓振广 王桂从 +2 位作者 褚宏博 张帅 李映君 《西安交通大学学报》 北大核心 2025年第4期158-170,共13页
针对压电式六维力/力矩传感器存在的维间耦合导致传感器测力性能下降问题,提出了一种基于长短期记忆神经网络(LSTM)的压电式六维力/力矩传感器解耦算法。首先,通过六维力传感器静态标定实验,获取解耦算法所需的实验数据,并对其进行处理... 针对压电式六维力/力矩传感器存在的维间耦合导致传感器测力性能下降问题,提出了一种基于长短期记忆神经网络(LSTM)的压电式六维力/力矩传感器解耦算法。首先,通过六维力传感器静态标定实验,获取解耦算法所需的实验数据,并对其进行处理;然后,通过分析传感器维间耦合产生的原因及LSTM神经网络解耦原理,构建LSTM神经网络解耦模型;最后,采用基于LSTM神经网络的解耦算法,对传感器输出的多维非线性特性开展优化,解耦后得到传感器输入、输出之间的映射关系和对应的输出数据,并与径向基函数(RBF)及最小二乘(LS)解耦算法进行对比分析。研究结果表明:所使用四点支撑式压电六维力传感器的最大重复性误差为1.55%;采用基于LSTM的神经网络算法解耦后,传感器输出结果的最大非线性误差、交叉耦合误差分别为0.55%和0.28%,均小于RBF和LS算法。LSTM神经网络解耦算法能有效减少六维力/力矩传感器的维间耦合,提高传感器的测量精度,对航空航天领域的发展具有参考意义。 展开更多
关键词 六维力/力矩传感器 压电式 解耦算法 长短记忆神经网络 维间耦合
在线阅读 下载PDF
基于长短时记忆神经网络的舟山群岛海域长时多要素海浪预报模型
14
作者 范迦勒 赵文宇 +2 位作者 周桑君 周一帆 白晔斐 《海洋与湖沼》 北大核心 2025年第5期1073-1085,共13页
待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点... 待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点所收集的海浪数据为基础,提出融合ICEEMDAN-VMD级联分解策略和LSTM的混合模型。该混合模型准确捕捉海洋波浪的非线性特征和长时序依赖规律,提高了复杂海况下对有效波高、有效波周期、波向的长时预报能力。与多变量LSTM模型相比,混合模型的48 h和72 h有效波高预测均方根误差(root mean square error,RMSE)降幅分别为53.9%和33.8%,有效波周期预测RMSE降幅分别为46.1%和39.1%,波向预测RMSE降幅分别为30.5%和23.9%。与EMD-LSTM模型相比,混合模型有效波高、有效波周期、波向的RMSE平均降幅分别为13.52%、17.79%、15.39%。 展开更多
关键词 信号分解 长短记忆神经网络 海浪预报 舟山群岛
在线阅读 下载PDF
基于双向长短期记忆神经网络的三维地应力场模拟
15
作者 姚昌宇 唐潮 +4 位作者 李晓明 周文 朱新春 邓乃尔 Umair Yousaf 《成都理工大学学报(自然科学版)》 北大核心 2025年第5期986-1004,共19页
准确预测地应力场对于设计水力压裂作业至关重要,因为它直接影响裂缝扩展和总体产能效率。传统的协克里金建模方法在捕捉多种岩石力学参数与地震属性之间复杂的非线性关系时常存在不足,尤其当这些参数受到沉积环境或岩性差异的影响时,... 准确预测地应力场对于设计水力压裂作业至关重要,因为它直接影响裂缝扩展和总体产能效率。传统的协克里金建模方法在捕捉多种岩石力学参数与地震属性之间复杂的非线性关系时常存在不足,尤其当这些参数受到沉积环境或岩性差异的影响时,预测精度会降低。为了解决这些问题,本研究提出了一种基于双向长短期记忆(Bi-LSTM)神经网络的三维地应力场预测新方法。该方法通过构建三维岩石力学约束模型,并将其与有限元方法结合进行地应力场预测。对测井数据、岩石力学参数和地震属性进行预处理,并训练Bi-LSTM模型,以更好地捕捉这些参数之间的复杂空间相关性。由Bi-LSTM模型生成的三维约束体作为协克里金方法.中的次级变量,构建综合岩石力学模型,然后在有限元框架下进行三维地应力场模拟。结果显示,与传统循环神经网络方法相比,该方法在预测精度和可靠性方面有显著提高,平均绝对误差减少超过80%,拟合精度提高了7%以上。最大水平应力、最小水平应力和应力方向的平均预测误差分别为2.29%,2.19%和7.97%。结果表明,本研究所提出的方法不仅提高了地应力场预测的准确性,还为机器学习方法在地应力场模拟中的应用提供了新的参考,有望更有效地推动水力压裂设计的发展。 展开更多
关键词 现今地应力场模拟 测井解释 双向长短记忆神经网络 协克里金方法 机器学习
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
16
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短记忆网络(Bilstm) 深度学习
在线阅读 下载PDF
基于LSTM-DNN(长短期记忆-深度神经网络)融合模型的土压平衡盾构土仓压力预测方法 被引量:3
17
作者 王伯芝 黄永亮 +6 位作者 陈文明 丁爽 刘浩 刘学增 彭子晖 吴炜枫 王嘉烨 《城市轨道交通研究》 北大核心 2024年第12期39-45,共7页
[目的]土仓压力是土压平衡盾构施工安全评估的关键参数,准确预测土仓压力有助于施工技术人员及时采取管控措施,进而保障地铁隧道的建设安全性。因此,有必要对土压平衡盾构土仓压力预测方法进行研究。[方法]提出一种多分支的LSTM(长短期... [目的]土仓压力是土压平衡盾构施工安全评估的关键参数,准确预测土仓压力有助于施工技术人员及时采取管控措施,进而保障地铁隧道的建设安全性。因此,有必要对土压平衡盾构土仓压力预测方法进行研究。[方法]提出一种多分支的LSTM(长短期记忆)-DNN(深度神经网络)融合模型。LSTM分支通过回溯历史数据提取其时序演变特征,DNN分支提取掘进状态特征,将两者组合后通过全连接层进行融合,实现对土仓压力的预测。依托济南轨道交通1号线实际盾构隧道数据对模型进行验证,并与LSTM模型、DNN模型进行了对比分析。[结果及结论]基于LSTM-DNN融合算法建立的土仓压力预测模型可以高效收敛,且所提模型在训练集和验证集上的预测效果良好。在后续的100步测试中,由LSTM-DNN融合模型得出的土仓压力预测值较好地反映了真实值的变化趋势,其平均偏差为7.65 kPa,相对误差为6.09%,预测精度较高。 展开更多
关键词 城市轨道交通 土仓压力预测 长短记忆 深度神经网络
在线阅读 下载PDF
基于LSTM神经网络的汽轮机汽缸状态预测与异常监测研究 被引量:1
18
作者 李东 刘志德 +1 位作者 程学亮 谢勇 《汽轮机技术》 北大核心 2025年第4期308-310,共3页
以汽轮机汽缸为研究对象,针对汽轮机运行过程中多源异构监测数据具有的高维度、强耦合、非线性等复杂特性,创新性地构建了基于深度学习的预测性维护框架。提出了一种基于长短时记忆(LSTM)神经网络的汽轮机状态预测与异常监测方法。通过... 以汽轮机汽缸为研究对象,针对汽轮机运行过程中多源异构监测数据具有的高维度、强耦合、非线性等复杂特性,创新性地构建了基于深度学习的预测性维护框架。提出了一种基于长短时记忆(LSTM)神经网络的汽轮机状态预测与异常监测方法。通过数据预处理、小波包降噪、LSTM模型训练与休哈特控制图相结合,实现了对汽轮机关键参数的精确预测与异常检测,且在频繁启停的实际数据集上验证了该方法的有效性。实验结果表明,该方法能够有效提高汽轮机故障预测精度与运行安全性。 展开更多
关键词 长短记忆网络(lstm) 小波包 休哈特控制图
在线阅读 下载PDF
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降 被引量:10
19
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短记忆神经网络
在线阅读 下载PDF
基于卷积神经网络和LSTM网络的矿用变压器故障诊断
20
作者 孙朋 刘超然 马建民 《金属矿山》 北大核心 2025年第6期168-173,共6页
矿用变压器作为矿山电力系统的核心设备,其运行状态直接影响矿山生产的安全性与效率。然而,由于矿山环境的复杂性和设备长期运行的特殊性,变压器故障诊断面临着高噪声、数据不平衡以及故障类型多样等挑战。为此,提出了一种基于卷积神经... 矿用变压器作为矿山电力系统的核心设备,其运行状态直接影响矿山生产的安全性与效率。然而,由于矿山环境的复杂性和设备长期运行的特殊性,变压器故障诊断面临着高噪声、数据不平衡以及故障类型多样等挑战。为此,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的混合模型(CNN-LSTM),用于矿用变压器的故障诊断。首先利用CNN对变压器运行数据进行特征提取,有效捕捉数据中的空间特征;然后采用LSTM对提取的特征进行时序建模,识别数据中的动态变化模式。试验结果表明:CNN-LSTM模型对于多个故障类型的平均诊断准确率达到了92.82%以上,显著优于传统诊断方法和单一神经网络模型,反映出该模型在提高诊断精度和鲁棒性方面具有显著优势,具有一定的应用前景。 展开更多
关键词 矿用变压器 故障诊断 卷积神经网络 长短记忆网络
在线阅读 下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部