期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ADS-B多特征迁移学习的GNSS干扰检测方法
1
作者 陈敏 李昊宇 +1 位作者 何炜琨 吴仁彪 《信号处理》 北大核心 2025年第7期1241-1254,共14页
全球导航卫星系统(Global Navigation Satellite System,GNSS)是现代航空系统的重要基础,其极易受到射频干扰,这可能导致航班备降、复飞或进近中止等情形,对航空安全造成严重影响。广播式自动相关监视(Automatic Dependent Surveillance... 全球导航卫星系统(Global Navigation Satellite System,GNSS)是现代航空系统的重要基础,其极易受到射频干扰,这可能导致航班备降、复飞或进近中止等情形,对航空安全造成严重影响。广播式自动相关监视(Automatic Dependent Surveillance-Broadcast,ADS-B)依赖于GNSS获取飞机位置信息,当GNSS受到射频干扰时,ADS-B的可用性也会受到影响。基于ADS-B数据来进行GNSS干扰检测成为一种可行的解决方案。针对现有基于ADS-B数据的GNSS干扰检测模型存在无法兼容多个ADS-B版本,难以适应我国国情的问题,以GNSS干扰事件中的ADS-B数据为研究对象,分析其在干扰条件下的特点,包括航迹波动和导航质量指标的变化特性。引入滑动窗口技术,动态计算统计特征并扩展特征维度,以更全面准确地反映干扰影响;提出了一种结合长短期记忆网络自编码器(Long Short-Term Memory-AutoEncoder,LSTM-AE)与领域对抗神经网络(Domain Adversarial Neural Network,DANN)的GNSS干扰检测方法。该方法通过LSTM-AE提取不同版本ADS-B的特征,并将其映射到同一个特征空间,提供一致的特征表示;采用DANN网络实现对DO-260A/B版本ADS-B数据(源域)中GNSS干扰的检测,并借助DANN的迁移学习能力,使其适应于DO-260版本的ADS-B数据(目标域),从而实现跨版本的高效检测。实验结果表明,所提出的LSTM-AE-DANN模型在DO-260、DO-260A/B版本的ADS-B数据集上均表现出优秀的检测性能和更强的适用性,适合我国国情,具有显著的实用价值。 展开更多
关键词 全球导航卫星系统干扰检测 广播式自动相关监视 长短期记忆自编码器 领域对抗神经网络 迁移学习 航空安全
在线阅读 下载PDF
基于无监督迁移学习的电梯制动器剩余寿命预测 被引量:9
2
作者 姜宇迪 胡晖 殷跃红 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第11期1408-1416,共9页
为了改善电梯制动器在真实工作环境下的寿命预测效果,提出一种基于长短期记忆网络自编码器(LSTM-ED)的无监督深度迁移学习方法,利用仿真数据实现制动器在工作时的健康状态分析.利用源领域数据初步训练LSTM-ED和全连接网络;以LSTM-ED为... 为了改善电梯制动器在真实工作环境下的寿命预测效果,提出一种基于长短期记忆网络自编码器(LSTM-ED)的无监督深度迁移学习方法,利用仿真数据实现制动器在工作时的健康状态分析.利用源领域数据初步训练LSTM-ED和全连接网络;以LSTM-ED为特征提取器,将仿真和实际数据映射到特征空间并利用最大平均差异实现数据对齐;利用全连接网络回归特征空间中的目标领域数据,从而实现对制动器在真实工作环境下的剩余生命周期预测.在训练阶段中,采用分步训练法替代传统的联合训练法,以保证单个模块的准确性.对比试验仿真数据与电梯塔中的实际工作数据,以验证方法的有效性.结果表明:通过引入迁移学习和分步训练法,所提方法可以将剩余生命周期预测的均方误差降低至0.0016,能够实现电梯制动器在真实工作环境下的剩余生命周期精准预测. 展开更多
关键词 电梯制动器 无监督深度迁移学习 长短期记忆网络自编码器 剩余生命周期 分步训练
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部