期刊文献+
共找到400篇文章
< 1 2 20 >
每页显示 20 50 100
基于改进长短期记忆网络模型的水库库区水温模拟
1
作者 郑铁刚 吴茂喜 +3 位作者 张迪 金瑾 林俊强 孙双科 《农业工程学报》 北大核心 2025年第3期144-153,共10页
水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中... 水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中嵌入相关分析模块自动筛选模型的特征输入,并优化输出维度,提出了一种改进的LSTM模型,并在溪洛渡水库工程开展了模型应用研究,结果表明:1)改进LSTM模型的均方根误差最大值为0.63,纳什效率系数最小值为0.96,表明模型整体性能较好,能够精准地捕捉数据中的长期依赖关系;2)基于改进LSTM模型的库区水温分布预测值和环境流体动力学模型(environmental fluid dynamics code,EFDC)模拟值随时间的量值分布及变化规律基本一致,两者的库区表层年际误差值为-1.19~1.04℃,中层年际误差值为-1.06~1.68℃,底层年际误差值为-1.28~1.07℃,年际水温最大相对误差为8.3%;3)相较于EFDC模型多天的模拟时长,改进模型的计算时间缩短至几百秒,计算效率大幅提升,实现了水温分布的快速、实时精准预测。该研究通过改进LSTM模型,实现了深水水库垂向水温的高效预测,研究结果可为分层取水设施的优化调控提供技术支撑。 展开更多
关键词 水温 模拟 改进的长短期网络记忆模型 水温分布 相关性分析 水温预测 人工智能学习
在线阅读 下载PDF
区域化长短期记忆神经网络(LSTM)洪水预报模型研究 被引量:1
2
作者 叶可佳 梁忠民 +4 位作者 陈红雨 钱名开 胡义明 王军 李彬权 《湖泊科学》 北大核心 2025年第2期651-659,共9页
针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一... 针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一数据集,扩大样本数量,为建立乏资料流域洪水预报模型提供了可能。本文选择胶东半岛作为研究区进行应用研究。为验证区域化模型在不同场景中的应用效果,设计了预报流域数据不参与建模,而仅根据区域内其他流域资料建模(区域化模型Ⅰ),以及预报流域的部分数据参与建模(区域化模型Ⅱ)两种情景;此外,选取仅根据预报流域数据训练的单流域模型作为基准模型进行对比分析。结果表明,对本次研究的水文资料短缺流域,两种区域化模型均取得了较好效果,且都优于单流域模型。相较而言,考虑了预报流域数据的区域化模型精度更高,说明在区域化LSTM构建中融入预报流域的数据,可进一步提升区域化模型的精度。研究成果可为乏资料地区的洪水预报提供参考。 展开更多
关键词 长短期记忆神经网络 洪水预报 区域化模型 水文气候相似区 乏资料流域
在线阅读 下载PDF
用户响应机制下基于长短期记忆网络的负荷聚合商用电模型
3
作者 朱虹 孟祥娟 +4 位作者 孙健 傅鹏 吴寅涛 唐昊 方道宏 《现代电力》 北大核心 2025年第3期550-561,共12页
负荷聚合商(load aggregator,LA)建立自身用电模型,能有效掌握自身响应电网的能力。鉴于LA内部用户众多,且用户响应具有随机性,难以建立整体的用电模型。因此,针对包含多类用户的LA,该文提出一种基于长短期记忆网络(long short-term mem... 负荷聚合商(load aggregator,LA)建立自身用电模型,能有效掌握自身响应电网的能力。鉴于LA内部用户众多,且用户响应具有随机性,难以建立整体的用电模型。因此,针对包含多类用户的LA,该文提出一种基于长短期记忆网络(long short-term memory,LSTM)的LA用电模型搭建方法。首先,根据LA内部用户的响应特性,将用户按其激励方式分类,并将日前温度、光照强度、各用户的激励价格和用户的负荷基线等用户特征数据进行聚合,生成训练样本。然后,根据聚合后的训练样本对LSTM进行训练,建立LA特征数据与其用电曲线的映射关系。最后,以包含居民、商业楼宇、充电站、医院四类用户的LA为算例进行验证。结果表明,模型能有效表征LA实施用户需求响应(user demand response,UDR)后的用电行为。 展开更多
关键词 负荷聚合商 用户需求响应 长短期记忆网络 用电模型
在线阅读 下载PDF
基于长短期记忆网络的半参数SEIR模型
4
作者 张静 金彤 《东北师大学报(自然科学版)》 北大核心 2025年第1期46-52,共7页
提出了带有非线性传播函数的半参数SEIR模型以捕获疾病的传播,从理论上分析了模型的基本性质及基本再生数.以新冠感染为例,比较了各国疫情初期的传播函数,得出不同地区人口、防疫措施等因素对疫情传播的影响不同.以印度为例,利用长短期... 提出了带有非线性传播函数的半参数SEIR模型以捕获疾病的传播,从理论上分析了模型的基本性质及基本再生数.以新冠感染为例,比较了各国疫情初期的传播函数,得出不同地区人口、防疫措施等因素对疫情传播的影响不同.以印度为例,利用长短期记忆(LSTM)神经网络对传播函数的离散值进行了拟合,代回半参数SEIR模型后预测出感染人数,所得结果与经典SEIR模型比较,平均绝对百分比误差降低71.73%.因此,半参数SEIR模型对疫情的理论估计更符合实际情况. 展开更多
关键词 SEIR模型 传播函数 半参数 长短期记忆神经网络 新冠感染
在线阅读 下载PDF
基于多源数据融合与卷积长短期记忆神经网络的聚合物挤出过程熔体密度监测方法 被引量:2
5
作者 张彬彬 陈祝云 +1 位作者 张飞 晋刚 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期54-62,共9页
聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚... 聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚合物挤出加工过程中,由于数据类型、工艺参数、操作环境等多变性因素的影响,传统的机器学习方法可能难以捕捉聚合物加工中不同输入参数和输出质量参数之间的复杂关系,使得监测任务难以获得理想的准确性。本文提出了一种基于多源数据融合与卷积长短期记忆神经网络(CNN–LSTM)的熔体密度监测方法,用于在线监测聚碳酸酯–丙烯腈–丁二烯–苯乙烯共聚物(PC/ABS)共混体系的熔体密度。首先,通过实时采集安装在挤出机模头处的近红外、拉曼及超声3种传感器数据,对3种传感数据进行预处理并融合后作为输入;然后,通过合理设计的网络结构,构建CNN–LSTM监测模型,利用CNN的特征提取能力与LSTM的预测能力,最终实现对聚合物共混过程中的熔体密度的实时监测。基于独立开发的多源传感数据实时采集装置获取的数据,利用所提方法对PC/ABS共混挤出过程的熔体密度进行实时监测,结果表明:本文方法能够准确监测聚合物熔体密度,其在测试集上的均方根误差和决定系数分别为0.975 5、0.006 3 g/cm3,比传统的卷积神经网络方法、长短期记忆网络方法、岭回归方法、偏最小二乘回归方法、多层感知机方法和支持向量机回归方法具有更高的预测精度;本文方法的10次输入平均预测时间为1.523 5 s,能够满足实际生产过程的实时监测。综上所述,所提出的基于多源数据融合与CNN–LSTM的熔体密度监测方法显著提高了聚合物挤出过程中熔体密度的实时监测精度,为挤出过程中聚合物的质量提供了可靠的技术支持。 展开更多
关键词 聚合物挤出加工 熔体密度 多传感器数据融合 卷积长短期记忆神经网络 在线监测
在线阅读 下载PDF
基于残差双向长短期记忆效应网络模型的电力企业碳排放预测 被引量:1
6
作者 陈齐 许明海 +1 位作者 沈赛燕 郭磊 《环境污染与防治》 CAS CSCD 北大核心 2024年第5期689-693,720,共6页
针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家... 针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家电力企业的数据为样本进行验证。结果表明:与目前主流数据预测算法逻辑回归(Regression)、循环神经网络(RNN)、反向传播神经网络(BPNN)模型相比,ResNet-BiLSTM模型的平均绝对百分比误差分别低5.7、4.1、2.8百分点,对碳排放量的预测更贴近电力企业核算碳排放波动情况,且预测准确率(96%)最高。ResNet-BiLSTM模型的成功应用不仅为电力企业提供了新的碳排放预测途径,同时为提高相关管理部门的碳排放数据监管效率提供了支持。 展开更多
关键词 残差双向长短期记忆效应网络 模型 碳排放 预测
在线阅读 下载PDF
利用卷积长短期记忆网络预测全球电离层Ne 被引量:1
7
作者 侯世敏 张剑 杜剑平 《信号处理》 CSCD 北大核心 2024年第7期1368-1376,共9页
由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of elec... 由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of electron,Ne)的预测工作对短波通信设备三维射线实时追踪定位提供必要条件。本文采用国际电离层参考模型提供的2016年电离层Ne数据,根据数据的三维空间时间序列特征,搭建了自编码器和卷积长短期记忆(Convolutional Long Short-Term Memory Network,Conv LSTM)网络组成的网络结构,在不引入地球自转周期之外任何先验知识的条件下,对Ne数据进行深度学习并实现预测,首先通过实验对比了SGD、Adagrad、Adadelta、Adam、Adamax和Nadam六种优化算法的性能,又对比了三种预测策略的均方根误差(Root Mean Square Error, RMSE),1h-to-1h预测策略的全球平均RMSE为1.0 NEU(最大值的0.4%),1h-to-24h和24h-to-24h预测策略的全球平均RMSE为6.3 NEU(2.6%)。由实验结果得出以下结论,一是Nadam优化算法更适合电离层Ne的深度学习,二是1h预测策略的性能与之前类似的电离层TEC预测工作(RMSE高于1.5 TECU,最大值的1%)相比有竞争力,但预测时间太短且对数据的实时性要求较高,三是两种24h预测策略虽能实现长期预测但性能不理想,要实现三维空间时间序列的长期高精度预测需要进一步改善神经网络、模型结构和预测策略。 展开更多
关键词 卷积长短期记忆网络 国际电离层参考模型 电离层 NE 预测 深度学习
在线阅读 下载PDF
基于双向长短期记忆网络的纺纱工艺重用知识图谱构建
8
作者 胡胜 张溪 +2 位作者 刘登基 高冰冰 赵小惠 《丝绸》 CAS CSCD 北大核心 2024年第12期52-60,共9页
针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次... 针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。 展开更多
关键词 知识图谱 纺纱工艺知识 双向长短期记忆网络 知识抽取 知识融合 实体关系
在线阅读 下载PDF
基于长短期记忆神经网络模型的空气质量预测 被引量:15
9
作者 张冬雯 赵琪 +1 位作者 许云峰 刘滨 《河北科技大学学报》 CAS 2020年第1期67-75,共9页
随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以... 随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以预测非常重的污染;SANKAR等使用多元线性回归对空气质量进行预测,但其实验结果表明线性模型预测精度低、效率慢;P REZ等使用统计方法对空气质量进行预测,实验结果证明统计方法的预测精度比较低;WANG等采用改进的BP神经网络建立了空气质量指数的预测模型,其实验验证了BP神经网络收敛速度慢、容易陷入局部最优解的问题;YANG等利用相邻网格的空气质量浓度效应,建立了基于随机森林的PM 2.5浓度预测模型,通过实验过程证明网格划分程序削弱了后续空气质量分析的质量和效率。这些方法都难以从时间角度建模,其中预测精度低是比较重要的问题。因为预测精度低可能会导致空气质量预测结果出现较大的误差。针对空气质量研究中预测精度低的问题,提出了基于长短期记忆单元(long short-term memory,LSTM)的神经网络模型。该模型使用MAPE,RMSE,R,IA和MAE等指标来检测LSTM神经网络与对比模型的预测性能。由于Delhi和Houston是空气污染程度比较严重的城市,所以使用的实验数据集来自Delhi的Punjabi Bagh监测站2014—2016年的空气质量数据和Houston的Harris County监测站2010—2016年的空气质量数据。LSTM神经网络与多元线性回归和回归模型(SVR)的比较结果表明,LSTM神经网络适应多个变量或多输入的时间序列预测问题,LSTM神经网络具有预测精度高、速度快和较强的鲁棒性等优点。 展开更多
关键词 计算机神经网络 空气质量 长短期记忆单元 深度学习 多元线性回归 回归模型
在线阅读 下载PDF
基于双尺度长短期记忆网络的交通事故量预测模型 被引量:10
10
作者 李文书 邹涛涛 +1 位作者 王洪雁 黄海 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第8期1613-1619,共7页
为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型.该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进... 为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型.该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进行重构.分别构建LSTM预测模型、门控循环单元(GRU)预测模型、自编码(SAEs)预测模型和双尺度长短期记忆网络(DS-LSTM)预测模型,利用这4个预测模型对2个数据集进行预测.结果表明,本研究模型相较其他模型能够有效预测交通事故时间序列,且具有较强的鲁棒性.对于2个数据集,相较于原始的LSTM模型,DS_LSTM预测模型预测准确度分别提高6%、28%;对2个不同数据库(利兹和UK)的测试表明本研究模型具有较好的泛化性能. 展开更多
关键词 交通事故 预测模型 长短期记忆网络 双尺度分解 双尺度重构
在线阅读 下载PDF
基于长短期记忆网络与轻梯度提升机的航空发动机大修期内剩余寿命预测 被引量:1
11
作者 杨硕 高成 《航空发动机》 北大核心 2024年第3期87-92,共6页
针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法... 针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法进行大修期内剩余使用寿命(RUL)预测。通过LSTM对原始数据进行特征提取,将LSTM的输出门中特征提取后的数据作为LightGBM模型的输入进行RUL预测。利用NASA提供的发动机实测数据集进行了仿真试验,实现了对单个发动机的RUL预测,并与其他6种模型预测结果进行对比,对其预测剩余使用寿命的有效性进行验证。结果表明:LSTM和LightGBM组合模型比其他模型的预测误差显著减小,其4组数据集均方根误差仅为12.45、20.23、12.58、21.75。 展开更多
关键词 剩余寿命预测 组合模型 轻梯度提升机 长短期记忆网络 航空发动机
在线阅读 下载PDF
基于长短期记忆生成对抗网络的小麦品质多指标预测模型 被引量:9
12
作者 蒋华伟 张磊 《电子与信息学报》 EI CSCD 北大核心 2020年第12期2865-2872,共8页
小麦多生理生化指标变化趋势反映了储藏品质的劣变状态,预测多指标时序数据会因关联性及相互作用而产生较大误差,为此该文基于长短期记忆网络(LSTM)和生成式对抗网络(GAN)提出一种改进拓扑结构的长短期记忆生成对抗网络(LSTM-GAN)模型... 小麦多生理生化指标变化趋势反映了储藏品质的劣变状态,预测多指标时序数据会因关联性及相互作用而产生较大误差,为此该文基于长短期记忆网络(LSTM)和生成式对抗网络(GAN)提出一种改进拓扑结构的长短期记忆生成对抗网络(LSTM-GAN)模型。首先,由LSTM预测多指标不同时序数据的劣变趋势;其次,根据多指标的关联性并结合GAN的对抗学习方法来降低综合预测误差;最后通过优化目标函数及训练模型得出多指标预测结果。经实验分析发现:小麦多指标的长短期时序数据的变化趋势不同,进一步优化模型结构及训练时序长度可有效降低预测结果的误差;特定条件下小麦品质过快劣变会使多指标预测误差增大,因此应充分考虑储藏期环境变化对多指标数据的影响;LSTM-GAN模型的综合误差相对于仅使用LSTM预测降低了9.745%,并低于多种对比模型,这有助于提高小麦品质多指标预测及分析的准确性。 展开更多
关键词 长短期记忆网络 生成式对抗网络 小麦多指标 预测模型
在线阅读 下载PDF
基于图神经网络和长短期记忆模型的房价预测方法
13
作者 刘歆 杜红力 温道洲 《计算机应用研究》 CSCD 北大核心 2023年第11期3282-3288,共7页
针对目前仅单独考虑价格序列中样本的趋势或仅考虑多个关联属性与价格间的函数关系,而不能更准确地进行房价预测的问题,构建了时空注意力图卷积长短期记忆模型AG-LSTM,包含局部特征提取模块、区域特征提取模块、复合预测模块。局部特征... 针对目前仅单独考虑价格序列中样本的趋势或仅考虑多个关联属性与价格间的函数关系,而不能更准确地进行房价预测的问题,构建了时空注意力图卷积长短期记忆模型AG-LSTM,包含局部特征提取模块、区域特征提取模块、复合预测模块。局部特征提取模块分别使用同构图和异构图神经网络提取各小区及价格关系属性、各小区和配套邻居节点相关性的特征信息;区域特征提取模块先对邻近小区节点进行聚类,再结合图注意力网络获得小区节点对所属区域的重要性程度,建立区域与小区之间的映射矩阵,根据小区节点信息和映射矩阵得到区域特征;复合预测模块使用长短期记忆模型对由局部特征和区域特征组成的复合特征进行时序建模,实现房价预测。以链家网北京房价数据进行了实验,结果表明AG-LSTM预测结果优于已有基线模型。该模型同时挖掘了小区间位置关系、小区与其配套间位置关系、多个关联属性、价格时序趋势对房屋价格的影响,较好地实现了房屋价格的预测。 展开更多
关键词 房价预测 图卷积网络 长短期记忆模型 时空注意力
在线阅读 下载PDF
基于长短期记忆网络和LightGBM组合模型的短期负荷预测 被引量:92
14
作者 陈纬楠 胡志坚 +2 位作者 岳菁鹏 杜一星 齐祺 《电力系统自动化》 EI CSCD 北大核心 2021年第4期91-97,共7页
短期负荷预测是电网安全调度与平稳运行的基础,为进一步提升负荷预测的精度,提出了基于长短期记忆(LSTM)网络和轻梯度提升机(LightGBM)的组合预测模型。首先,根据LSTM网络和LightGBM模型的输入结构,将预处理后的负荷数据、温度数据、日... 短期负荷预测是电网安全调度与平稳运行的基础,为进一步提升负荷预测的精度,提出了基于长短期记忆(LSTM)网络和轻梯度提升机(LightGBM)的组合预测模型。首先,根据LSTM网络和LightGBM模型的输入结构,将预处理后的负荷数据、温度数据、日期数据以及节假日信息分别输入2个模型中,通过训练得出各自的预测结果。然后,采用最优加权组合法确定权重系数,并得出组合模型的预测值。最后,采用实际负荷数据进行算例分析,结果表明所提方法能够有效结合2种模型的优点,在保留对时序数据整体感知的同时兼顾非连续特征的有效信息,与其他模型相比具有更高的预测精度。 展开更多
关键词 短期负荷预测 长短期记忆网络 轻梯度提升机 最优加权组合法 组合模型
在线阅读 下载PDF
基于小波分解-长短期记忆网络预测模型的酱卤肉制品安全预测分析 被引量:6
15
作者 尹佳 陈翔 +4 位作者 董曼 陈锂 郭鹏程 张涛 文红 《食品科学》 EI CAS CSCD 北大核心 2022年第3期121-128,共8页
为实现酱卤肉制品安全风险精准预警,本研究基于2014—2019年全国酱卤肉制品历史抽样检验数据信息,尝试将小波分解和长短期记忆网络(long short-term memory,LSTM)模型相结合,构建了全国31个省份酱卤肉制品安全风险预测模型。结果表明,... 为实现酱卤肉制品安全风险精准预警,本研究基于2014—2019年全国酱卤肉制品历史抽样检验数据信息,尝试将小波分解和长短期记忆网络(long short-term memory,LSTM)模型相结合,构建了全国31个省份酱卤肉制品安全风险预测模型。结果表明,小波分解-LSTM预测模型对酱卤肉制品安全风险预测有较高的准确率,以湖北省为例,预测准确率为0.99,全国31个省份的平均准确率为0.95,标准偏差为0.029,整体准确率较高,且准确率波动较小,说明建立的小波分解-LSTM模型可以适用于酱卤肉制品安全风险等级的精准预测,可为日常监管和食品安全风险预警提供技术支撑。 展开更多
关键词 酱卤肉制品 风险预测模型 小波分解 长短期记忆网络
在线阅读 下载PDF
基于经验模态分解与投资者情绪的长短期记忆网络股票价格涨跌预测模型 被引量:4
16
作者 翁晓健 林旭东 赵帅斌 《计算机应用》 CSCD 北大核心 2022年第S02期296-301,共6页
针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到... 针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到若干个具有不同时间尺度的局部特征信号的本征模函数(IMF);其次,通过引入改进的股票领域情感词典,对东方财富网股吧的帖子,进行上一个股票交易日收盘后和下一个股票交易日开盘前的投资者情感分析,得到下一个股票交易日的投资者情绪指标;最后,将基础的股票基本行情数据、经过EMD得到的IMF以及投资者情绪指标加入LSTM神经网络预测下一个交易日的股票涨跌。仿真实验结果表明,在2019年1月至2021年9月的牧原股份(002714)股票数据上,与单独使用LSTM模型相比,改进后的LSTM模型的预测准确率提高了12.25个百分点,在预测为涨的F1值和预测为跌的F1值上分别提高了1.2个百分点和25.21个百分点。由此可见,基于EMD与投资者情绪的LSTM股票价格涨跌预测模型有效提高了预测精度,为股票市场的涨跌预测提供了一种有效的实验方法。 展开更多
关键词 股票预测模型 机器学习 投资者情绪 经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
基于鲸鱼优化-长短期记忆网络模型的机-热老化绝缘纸剩余寿命预测方法 被引量:19
17
作者 于永进 姜雅男 李长云 《电工技术学报》 EI CSCD 北大核心 2022年第12期3162-3171,共10页
换流变压器作为特/超高压直流输电系统中的关键设备,对变压器用绝缘纸剩余寿命进行有效预测,可为换流变压器的运行维护提供一定的理论依据,鉴于此,提出一种基于鲸鱼优化算法(WOA)和长短期记忆网络(LSTM)的预测方法。首先,结合绝缘纸加速... 换流变压器作为特/超高压直流输电系统中的关键设备,对变压器用绝缘纸剩余寿命进行有效预测,可为换流变压器的运行维护提供一定的理论依据,鉴于此,提出一种基于鲸鱼优化算法(WOA)和长短期记忆网络(LSTM)的预测方法。首先,结合绝缘纸加速机-热老化实验及试样的机械、电气性能指标和对应裂解产物的糠醛含量,由主成分分析法(PCA)对聚合度、糠醛含量和特征频率下介质损耗因数等表征绝缘纸老化的多特征量进行融合;获得综合评估指标与绝缘纸抗张强度间的量化关系,并依此将绝缘性能优良和严重劣化时对应的抗张强度分别作为正、负理想值;进一步构建贴近度构造退化指标序列并将其作为模型输入。然后,利用鲸鱼优化算法对长短期记忆网络的关键参数进行寻优。最后,构建WOA-LSTM模型对绝缘纸剩余寿命进行预测。研究表明,所提出的WOA-LSTM模型既纳入了可表征绝缘纸老化状态的多个特征量,亦可显著提高剩余寿命的预测精度,为换流变压器绝缘系统安全稳定运行提供有力保障。 展开更多
关键词 鲸鱼优化 长短期记忆网络 机-热协同作用 多特征融合 剩余寿命预测
在线阅读 下载PDF
基于长短期记忆神经网络的罗非鱼生长预测模型
18
作者 安丰和 袁永明 +1 位作者 马晓飞 沈楠楠 《南方农业学报》 CAS CSCD 北大核心 2018年第10期2110-2116,共7页
【目的】通过测定吉富罗非鱼生长指标,建立其生长的长短期记忆神经网络(Long Short-term Memory neural network model,LSTM)模型,分析模型的拟合度和准确度,为罗非鱼的育种和养殖提供参考。【方法】以罗非鱼生长阶段的生长时间、投喂... 【目的】通过测定吉富罗非鱼生长指标,建立其生长的长短期记忆神经网络(Long Short-term Memory neural network model,LSTM)模型,分析模型的拟合度和准确度,为罗非鱼的育种和养殖提供参考。【方法】以罗非鱼生长阶段的生长时间、投喂量及水槽编号3个指标数据作为输入量,通过Dropout和one-hot的方法建立LSTM模型。【结果】模型在训练开始后迅速下降,100次迭代左右,误差下降速度开始逐步减缓,在1000次迭代后,误差开始收敛,数值趋于稳定,稳定值误差在0.0036左右。训练完成的模型对测试集的预测结果相对误差随真实值变大而逐渐变小,真实值较大且稳定时,相对误差较小,整体拟合程度较好。【建议】生长预测模型满足基本生产需求的同时,需增加样本数据的记录采集,建立生长数据库;结合信息平台等技术获取多影响影子数据,增加输入变量,使模型更加完善合理;选择合适的模型,结合预测数据与生产,合理规划上市时间及安排投饲方案等,使养殖利益最大化。 展开更多
关键词 罗非鱼 长短期记忆神经网络模型 生长模型 预测
在线阅读 下载PDF
基于长短期记忆网络的动车组轴箱轴承故障诊断预测模型研究 被引量:5
19
作者 刘冠男 常振臣 +2 位作者 高明亮 赵明 高珊 《城市轨道交通研究》 北大核心 2022年第2期86-91,共6页
动车组轴箱轴承是动车组转向架的关键部件,其运行品质直接影响动车组的运营安全。以深度学习算法为基础,利用轴承振动信号时间序列的特点和LSTM(长短期记忆网络)擅长处理时间序列的优势,通过构建LSTM模型对轴承的故障状态进行识别,开发... 动车组轴箱轴承是动车组转向架的关键部件,其运行品质直接影响动车组的运营安全。以深度学习算法为基础,利用轴承振动信号时间序列的特点和LSTM(长短期记忆网络)擅长处理时间序列的优势,通过构建LSTM模型对轴承的故障状态进行识别,开发了基于深度学习的轴承故障诊断预测软件,实现了轴承故障早期的分类与诊断。模型的仿真和试验表明,该诊断模型能有效地提高故障诊断的辨识精度,模型拟合优度可达到90%,辨识准确率最高可达到98%。 展开更多
关键词 动车组 轴箱轴承 故障诊断预测模型 长短期记忆网络
在线阅读 下载PDF
基于遗传算法改进的一阶滞后滤波和长短期记忆网络的蓝藻水华预测方法 被引量:25
20
作者 于家斌 尚方方 +4 位作者 王小艺 许继平 王立 张慧妍 郑蕾 《计算机应用》 CSCD 北大核心 2018年第7期2119-2123,2135,共6页
河湖藻类水华形成过程中所具有的突发性和不确定性,导致对藻类水华爆发预测准确性不高。为解决此问题,以叶绿素a的浓度值作为蓝藻水华演化过程表征指标,提出基于长短期记忆(LSTM)循环神经网络(RNN)蓝藻水华预测模型。首先,用遗传算法改... 河湖藻类水华形成过程中所具有的突发性和不确定性,导致对藻类水华爆发预测准确性不高。为解决此问题,以叶绿素a的浓度值作为蓝藻水华演化过程表征指标,提出基于长短期记忆(LSTM)循环神经网络(RNN)蓝藻水华预测模型。首先,用遗传算法改进的一阶滞后滤波(GF)优化算法对数据进行平滑滤波处理;然后,搭建GFLSTM网络的蓝藻水华预测模型,实现对水华发生的精准预测;最后,以太湖水域梅梁湖区域的采样数据为样本,对预测模型进行检验,并与传统的RNN和LSTM网络进行对比。仿真结果表明,提出的GF-LSTM网络模型平均相对误差控制在16%~18%,而RNN模型的预测平均相对误差为28%~32%,LSTM网络模型的平均相对误差为19%~22%,对采用数据的平滑性处理效果较好,预测精度更高,对样本具有更好的适应性,克服了传统RNN模型在长期训练时出现的梯度消失与梯度爆炸缺点。 展开更多
关键词 蓝藻水华 长短期记忆 滤波算法 循环神经网络 预测模型
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部