期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于长短期记忆神经网络的健康状态估算 被引量:1
1
作者 肖仁鑫 宋新月 +2 位作者 张梦帆 夏雪磊 肖佳鹏 《农业装备与车辆工程》 2020年第4期77-81,共5页
当前电池健康状态估算与预测在处理大量电池数据、时间间隔较长存在一定缺陷。长短期记忆神经网络算法在解决该问题时效果明显。在完成电池循环充放电实验基础之上,分析和提取电池放电过程中外部信号变化的特征指标,以电池放电数据中放... 当前电池健康状态估算与预测在处理大量电池数据、时间间隔较长存在一定缺陷。长短期记忆神经网络算法在解决该问题时效果明显。在完成电池循环充放电实验基础之上,分析和提取电池放电过程中外部信号变化的特征指标,以电池放电数据中放电容量、放电时间、循环次数训练并建立了长短期记忆神经网络预测模型,采用3种不同的自适应学习率优化算法对学习训练部分进行优化,最后对比分析模型预测的准确程度。结果表明,长短期记忆神经网络估算电池健康状态的误差小于5%,证明预测模型的有效性。 展开更多
关键词 锂离子电池 健康状态 长短期记忆神经网络算法 学习率优化
在线阅读 下载PDF
突发公共卫生事件下感染人数与需求预测
2
作者 王付宇 叶惠芬 李艳 《安全与环境学报》 北大核心 2025年第10期3913-3922,共10页
当突发公共卫生事件发生后,由于其传播规律不明确和供需信息不对称等问题使得医疗物资的保障问题突显。研究通过预测突发公共卫生事件的发展情况,为建立应急医疗物资需求预测模型以确保稳定的物资保障提供重要基础。研究提出了易感者-... 当突发公共卫生事件发生后,由于其传播规律不明确和供需信息不对称等问题使得医疗物资的保障问题突显。研究通过预测突发公共卫生事件的发展情况,为建立应急医疗物资需求预测模型以确保稳定的物资保障提供重要基础。研究提出了易感者-暴露者-感染者-康复者-死亡者(Susceptible-Exposed-Infectious-Recovered-Death,SEIRD)模型和遗传算法(Genetic Algorithm,GA)改进的长短期记忆(Long Short-Term Memory,LSTM)神经网络相结合的SEIRD-GA-LSTM模型,实现了对疫情多阶段、多尺度的预测。实例分析结果显示:基于SEIRD-GA-LSTM的组合预测方法准确率较高,验证了模型的有效性和稳健性。 展开更多
关键词 公共安全 多阶段预测 易感者-暴露者-感染者-康复者-死亡者模型 遗传算法改进的长短期记忆网络 组合预测方法
在线阅读 下载PDF
机床夹具设计知识图谱构建及应用 被引量:1
3
作者 张称心 孙家盛 段阳 《机电工程》 北大核心 2025年第1期106-116,共11页
针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL... 针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL)对这两类知识进行了本体建模,构建了知识图谱的模式层;其次,在模式层的指导下,以机床夹具设计原理规则文档和设计实例为数据源,利用双向长短期记忆网络-条件随机场算法(BiLSTM-CRF)对其进行了知识抽取,得到了结构化的机床夹具设计知识;然后,运用Neo4j图数据库存储结构化的机床夹具设计知识,得到了知识图谱的数据层;最后,以轴承套筒法兰的夹具设计为例,对该方法的可行性进行了验证;考虑到企业对同一夹具结构的不同技术需求,提出了一种基于图形数据科学算法(GDS)的相似元件替代法,对夹具知识图谱中47个定位元件节点进行了相似度计算,得到了1081条相似度数据样本,并构建了综合评判模型。研究结果表明:当相似度阈值设置为0.76时,将定位元件进行替换的精确率达到了84%。通过建立知识图谱,完成了机床夹具设计的两类知识的有效关联,为构建数据驱动的机床夹具智能设计奠定了基础。 展开更多
关键词 机械设计 智能设计 知识图谱 知识抽取 知识融合 本体建模语言 双向长短期记忆网络-条件随机场算法 图形数据科学算法
在线阅读 下载PDF
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
4
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
基于LSTM的TTE网络速率约束流量预测 被引量:7
5
作者 史亚菲 李峭 熊华钢 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第4期822-829,共8页
时间触发以太网(TTE)中的速率约束(RC)流量为事件触发流量,在RC流量动态调度的应用场景下,若能预测未来短时间内数条RC流量到达交换节点的序列,使交换节点提前进行调度决策,以减小RC流量时延,提高网络吞吐量。对RC流量到达序列预测问题... 时间触发以太网(TTE)中的速率约束(RC)流量为事件触发流量,在RC流量动态调度的应用场景下,若能预测未来短时间内数条RC流量到达交换节点的序列,使交换节点提前进行调度决策,以减小RC流量时延,提高网络吞吐量。对RC流量到达序列预测问题进行了研究,建立了RC流量的到达序列模型,提出了基于长短期记忆网络(LSTM)算法的RC流量预测算法。利用OMNET++工具进行TTE网络仿真,得到多组混合关键性配置下RC流量的传输数据;以此作为输入样本对预测算法进行训练和测试。实验结果显示,LSTM算法在RC流量预测问题的准确率达到了70%以上。通过对比实验说明所提算法适用于RC流量预测场景。 展开更多
关键词 时间触发以太网(TTE)网络 速率约束(RC)流量 流量预测 长短期记忆网络(LSTM)算法 网络仿真
在线阅读 下载PDF
基于改进随机森林的高光谱激光雷达信号分选研究
6
作者 刘子恒 刘汉城 敏乾 《激光杂志》 CAS 北大核心 2024年第8期218-223,共6页
高光谱激光雷达数据在频谱维度上具有很高的维度,包含大量的波段或频带,易出现忽视频谱带中有用信息的情况,进而导致高光谱激光雷达信号分选效果较差。为此,提出基于改进随机森林的高光谱激光雷达信号分选研究。首先,采用变分模态分解... 高光谱激光雷达数据在频谱维度上具有很高的维度,包含大量的波段或频带,易出现忽视频谱带中有用信息的情况,进而导致高光谱激光雷达信号分选效果较差。为此,提出基于改进随机森林的高光谱激光雷达信号分选研究。首先,采用变分模态分解算法对高光谱激光雷达含噪信号展开去噪处理;然后,采用长短期记忆神经网络算法对去噪后的高光谱激光雷达信号展开特征提取,并利用自编码神经网络对提取的特征展开重构处理,以获取重构后的雷达信号特征;最后,采用随机森林算法根据高光谱激光雷达信号特征完成信号分选。实验结果表明,所提方法的SNR为30.648 dB,RMSE为0.1498,预测分选类别与实际分选类别几乎一致,分析时间始终未超过5 s,表明所提方法的分选性能较好,具有实用性。 展开更多
关键词 高光谱激光雷达信号 随机森林 变分模态分解算法 长短期记忆神经网络算法 自编码神经网络
在线阅读 下载PDF
地铁车站深基坑开挖变形智能多步预测方法 被引量:10
7
作者 刘俊城 谭勇 张生杰 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期1108-1117,共10页
为更好预测深基坑开挖期间地下连续墙的侧向位移变形,基于长短期记忆神经网络(LSTM)智能算法理论构建了LSTM多步预测模型.首先对多步预测模型的多输出策略进行论述,其次详细介绍了LSTM多步预测模型的构建方法,并对模型输入集空间维度和... 为更好预测深基坑开挖期间地下连续墙的侧向位移变形,基于长短期记忆神经网络(LSTM)智能算法理论构建了LSTM多步预测模型.首先对多步预测模型的多输出策略进行论述,其次详细介绍了LSTM多步预测模型的构建方法,并对模型输入集空间维度和时间维度两项超参数进行探究,以提高模型的预测准确度.最后依托某富水砂土深基坑工程实例,分析了模型预测值与实际监测值的差异.3个典型监测点的数据分析结果表明LSTM多步预测模型具有较强的泛化能力,相关算法对深基坑开挖变形预测方法的改进优化具有参考价值. 展开更多
关键词 基坑工程 开挖变形预测 长短期记忆神经网络智能算法 多步预测模型
在线阅读 下载PDF
基于深度学习的集群式供应链应急物资需求预测研究 被引量:20
8
作者 薛红 徐锐迪 +2 位作者 王圆 廖智峰 徐卓然 《计算机工程与科学》 CSCD 北大核心 2021年第4期753-760,共8页
在突发事件和大数据情景下,建立基于数据流模糊C均值聚类算法的集群式供应链应急物资需求重要度决策算法,有助于辨识集群式供应链子系统应急物资需求的重要程度。针对集群式供应链中各子供应链之间的耦合特性和预测指标的快速变化数据... 在突发事件和大数据情景下,建立基于数据流模糊C均值聚类算法的集群式供应链应急物资需求重要度决策算法,有助于辨识集群式供应链子系统应急物资需求的重要程度。针对集群式供应链中各子供应链之间的耦合特性和预测指标的快速变化数据流特征,提出基于长短期记忆网络的集群式供应链应急物资需求动态预测算法,提取集群式供应链多个子系统应急物资需求参数的时序特征,动态地、分布地对互联大系统的应急物资需求不确定性进行系统辨识估计。仿真实验结果表明了基于长短期记忆网络的集群式供应链互联大系统应急物资需求动态预测算法的可行性和精确性。 展开更多
关键词 需求预测 物资需求重要度 长短期记忆网络算法 集群式供应链 应急物资
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部