期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
1
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
考虑土壤水分影响迟滞效应的蒸散发智能估算模型
2
作者 安琦 杨硕佳音 +2 位作者 张兰慧 王一博 贺缠生 《兰州大学学报(自然科学版)》 2025年第5期606-612,620,共8页
基于长短期记忆网络(LSTM)方法,构建考虑土壤水分影响迟滞效应的蒸散发智能估算模型(LSTM-SWC).结果表明,土壤水分对蒸散发的显著影响层分别为:0~10 cm(榆林、盐池、鄂尔多斯)、10~20 cm(景阳岭)、20~30 cm(大野口)和20~40 cm(垭口、阿... 基于长短期记忆网络(LSTM)方法,构建考虑土壤水分影响迟滞效应的蒸散发智能估算模型(LSTM-SWC).结果表明,土壤水分对蒸散发的显著影响层分别为:0~10 cm(榆林、盐池、鄂尔多斯)、10~20 cm(景阳岭)、20~30 cm(大野口)和20~40 cm(垭口、阿柔、大沙龙、通辽),显著影响层前1 d的土壤水分对蒸散发的影响最为显著;在干旱半干旱地区,LSTM-SWC模型率定期相关系数(R)为0.88,均方根误差(R_(MSE))为0.54 mm/d,克林—古普塔效率(K_(GE))为0.83,不确定度(U95%)为2.17 mm/d;验证期R=0.82,R_(MSE)=0.67 mm/d,K_(GE)=0.82,U95%=2.55 mm/d,LSTM-SWC模型模拟蒸散发的性能较好,与未考虑土壤水分影响迟滞效应的机器学习模型和基于物理机制的CLM5.0模型相比,LSTMSWC更适用于估算干旱半干旱地区实际蒸散发.气象因素对LSTM-SWC模型性能的影响占79.26%,土壤水分对模型性能的影响占20.74%.在不同土壤水分百分位上,祁连山区LSTM-SWC模型K_(GE)=0.70~0.86,略有波动,变化不大;农牧交错带LSTM-SWC模型K_(GE)=-0.13~0.60,且变异性极强.LSTMSWC模型模拟性能在蒸散发变异性较强的农牧交错带性能略差,是由于当蒸散发变异性较强时,模型需要增加更多的隐藏单元数以刻画蒸散发的强变异性.但更复杂的模型结构扩大了噪声的影响,使得模型泛化能力变差,性能下降.考虑土壤水分迟滞效应可显著提升干旱半干旱地区蒸散发模拟性能.LSTM-SWC模型可为干旱半干旱地区草地蒸散发估算提供新方法. 展开更多
关键词 土壤水分迟滞效应 蒸散发 长短期记忆网络法 干旱半干旱地区
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部