期刊文献+
共找到240篇文章
< 1 2 12 >
每页显示 20 50 100
基于相关性分析和长短期记忆网络分位数回归的短期公共楼宇负荷概率密度预测 被引量:45
1
作者 杨秀 陈斌超 +1 位作者 朱兰 方陈 《电网技术》 EI CSCD 北大核心 2019年第9期3061-3070,共10页
公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性... 公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性测度、长短期记忆网络分位数回归(quantile regression long short-term memory,QRLSTM)和核密度估计(kernel density estimation,KDE)的短期公共楼宇负荷概率密度预测的方法。首先采用MDS技术对楼宇群进行初步划分,再通过基于Copula函数的相关性测度方法定量计算影响因素(外界天气、人类活动)与目标楼宇负荷的相关程度;其次,运用QRLSTM回归模型预测未来不同分位数上的负荷值。最后,通过核密度估计得到未来任意时刻预测点的概率密度函数。实验结果表明,综合考虑强相关影响因素,并结合QRLSTM回归和KDE技术,能够更好地解决短期公共楼宇负荷概率密度预测问题。 展开更多
关键词 楼宇负荷概率预测 强相关因素 多维尺度 COPULA函数 长短期记忆网络分位数回归 核密度估计
在线阅读 下载PDF
多目标优化灰狼算法改进长短期记忆网络的睡眠分期研究
2
作者 高鹏强 丁顺良 +3 位作者 宛磊 李奎 吴广良 高建设 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期98-106,共9页
由于现有睡眠分期方法下N1期分期精度较低,提出一种基于多目标优化灰狼算法改进的长短期记忆网络睡眠分期模型。该模型通过选用不同收敛因子,优化灰狼算法的适应度函数,自动调节LSTM网络隐藏层节点,选取差分算法对灰狼位置迭代进行优化... 由于现有睡眠分期方法下N1期分期精度较低,提出一种基于多目标优化灰狼算法改进的长短期记忆网络睡眠分期模型。该模型通过选用不同收敛因子,优化灰狼算法的适应度函数,自动调节LSTM网络隐藏层节点,选取差分算法对灰狼位置迭代进行优化,跳出局部最优解;选取现有原始ISRUC-Sleep数据集,求取多种时域,频域α、β、δ、θ波能量占比,以及非线性特征复合多尺度排列熵等指标,代入DE-GWO-LSTM模型中进行分期计算,结果表明模型准确率为88.6%,对于N1期的睡眠分期精度达70%以上,优于其他模型。 展开更多
关键词 睡眠 灰狼算法 长短期记忆网络 算法
在线阅读 下载PDF
混合变分模态长短期记忆网络水库表面位移形变预测
3
作者 孙喜文 贺小星 +3 位作者 鲁铁定 王海城 张云涛 陈红康 《国防科技大学学报》 北大核心 2025年第3期151-161,共11页
为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decom... 为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decomposition long short-term memory,MVMDLSTM)模型预测方法;对不同单一预测模型与组合模型采用多源数据集验证新方法的可靠性。实验结果表明:MVMDLSTM模型能有效减弱单一预测模型与经验模态分解组合模型估计的偏差,MVMDLSTM模型预测精度更优,为稳定监测水库慢滑移和蠕动等微小变形预测预警提供有效的数据决策。 展开更多
关键词 模态 人工神经网络 长短期记忆网络 形变预测
在线阅读 下载PDF
基于变分模态分解和粒子群优化长短期记忆网络的黄土地区高填方路基沉降预测
4
作者 柴少波 岳山丘 +2 位作者 王铭一 吕龙龙 范康凯 《太原理工大学学报》 北大核心 2025年第5期907-915,共9页
【目的】为实现黄土地区高填方路基沉降趋势的准确预测。【方法】通过建立基于变分模态分解(VMD)和粒子群算法(PSO)优化的长短期记忆网络(LSTM)预测模型VMD-PSO-LSTM,学习高填方路基沉降数据的高层次特征并预测其发展变化趋势。通过工... 【目的】为实现黄土地区高填方路基沉降趋势的准确预测。【方法】通过建立基于变分模态分解(VMD)和粒子群算法(PSO)优化的长短期记忆网络(LSTM)预测模型VMD-PSO-LSTM,学习高填方路基沉降数据的高层次特征并预测其发展变化趋势。通过工程实例,对所建立的预测模型进行验证。【结果】结果表明:VMD-PSO-LSTM模型对高填方路基沉降曲线的预测效果良好,且精度均比反向传播神经网络模型(BP)、LSTM模型与只用PSO优化的LSTM模型(PSO-LSTM)有了进一步的提高,具有更高的鲁棒性和适用性。 展开更多
关键词 黄土 高填方路基 沉降预测 模态 长短期记忆网络
在线阅读 下载PDF
基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法 被引量:8
5
作者 黄睿 朱玲俐 +3 位作者 高峰 王渝红 杨亚兰 熊小峰 《现代电力》 北大核心 2024年第1期97-105,共9页
电力负荷序列易受多重外部因素影响而呈现复杂性,不利于精准预测。为此,提出一种基于变分模态分解(variational mode decomposition,VMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short-term memory netw... 电力负荷序列易受多重外部因素影响而呈现复杂性,不利于精准预测。为此,提出一种基于变分模态分解(variational mode decomposition,VMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short-term memory network,CNN-LSTM)相结合的短期电力负荷并行预测方法。先采用VMD将负荷数据分解为规律性强的各本征模态函数(intrinsic mode function,IMF)及残差;再将各分量分别输入到各自对应的CNN-LSTM混合预测网络,获得各初始预测值,并将该值与由气候、日期类型等组合得到的相关因素特征集相结合,进一步得出修正预测值;最终,叠加各分量修正预测值即得到完整预测结果。在实际负荷数据上做验证分析,结果表明,考虑相关外部因素特征集后日负荷预测平均相对误差均值可降低2.18%。与几种常规负荷预测方法进行效果对比,验证了该方法的有效性和可行性。 展开更多
关键词 短期负荷预测 模态 卷积神经网络 长短期记忆网络 相关因素特征集
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:9
6
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
计及误差修正的变分模态分解-长短期记忆神经网络短期负荷预测 被引量:16
7
作者 伍骏杰 张倩 +1 位作者 陈凡 李国丽 《科学技术与工程》 北大核心 2022年第12期4828-4834,共7页
精确地短期负荷预测为电力系统经济调度和机组最优负荷分配交易奠定基础。因此,提出了一种将变分模态分解(variational mode decomposition,VMD)和长短期记忆神经网络(long short-term memory,LSTM)结合的短期负荷预测模型,并使用支持... 精确地短期负荷预测为电力系统经济调度和机组最优负荷分配交易奠定基础。因此,提出了一种将变分模态分解(variational mode decomposition,VMD)和长短期记忆神经网络(long short-term memory,LSTM)结合的短期负荷预测模型,并使用支持向量回归(support vector regression,SVR)构建修正后的误差序列对初始预测序列补偿。首先,运用VMD算法将非平稳的负荷序列分解为多个相对平稳的模态分量;然后,将每个模态分量输入LSTM模型进行预测,并将各分量预测结果合并得到VMD-LSTM的预测结果;最后将残差值输入SVR模型中构造误差序列,来修正后一日的VMD-LSTM预测结果。通过实际案例测试,实验结果对比其他模型结果有更低的预测误差,证明所提方法的有效性。 展开更多
关键词 短期负荷预测 模态解(VMD) 长短期记忆神经网络(LSTM) 支持向量回归(SVR) 误差修正
在线阅读 下载PDF
基于变分模态分解和长短期记忆网络的大平移抖动电子稳像算法 被引量:1
8
作者 郝铎 曾令飞 李成伟 《计算机应用》 CSCD 北大核心 2023年第S02期168-175,共8页
山地车载光电系统在采集图像的过程中经常出现大平移随机抖动,造成视频模糊、稳定性较差等问题。均值滤波法和小波变换法等算法通常根据帧间运动的物理特性(如频率、幅值等)建立数学模型。针对该类算法通常基于先验的滤波算子进行处理,... 山地车载光电系统在采集图像的过程中经常出现大平移随机抖动,造成视频模糊、稳定性较差等问题。均值滤波法和小波变换法等算法通常根据帧间运动的物理特性(如频率、幅值等)建立数学模型。针对该类算法通常基于先验的滤波算子进行处理,缺乏一定的自适应性,难以适用于复杂的电子稳像应用环境的问题,提出一种基于变分模态分解(VMD)和长短期记忆(LSTM)网络的自适应电子稳像算法。通过对全局运动矢量序列依频率信息进行自适应分解,以获得一系列具有窄带特性的本征模态函数(IMF);同时,结合IMF的时空域信息,将IMF作为训练变量,搭建LSTM网络模型,对IMF进行分类,筛选出有意运动主导的IMF并重构出有意运动矢量序列,实现视频的稳定。实验结果表明,与均值滤波法和小波变换法等算法对比,所提算法所得结果分类准确度最高(最低91.4%),通过深度学习网络对频率、幅值、时空域信息等进行综合评判,对大平移抖动稳像有明显的提升效果,具有更好的鲁棒性。 展开更多
关键词 电子稳像 模态 长短期记忆网络 大平移抖动 深度学习
在线阅读 下载PDF
基于自回归与长短期记忆网络混合模型的热电偶动态补偿方法研究 被引量:3
9
作者 崔志文 李文军 +1 位作者 虞思思 金敏俊 《中国测试》 CAS 北大核心 2023年第9期63-72,共10页
热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。... 热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。采用不同强度的高斯白噪声模拟噪声环境,仿真构建热电偶模拟测量数据集。在模拟测量数据集上对算法做验证。计算结果表明,该算法在不同噪声环境下均能有效地减少动态误差。搭建热电偶动态温度测量实验平台,以K型镍铬/镍硅热电偶为实验对象,取得实验测量数据集。实验和计算结果表明,经算法补偿后的热电偶动态响应得到改善,平均动态误差为0.0028,标准差为0.0102。 展开更多
关键词 动态温度测量 热电偶 动态误差补偿 回归长短期记忆网络混合模型
在线阅读 下载PDF
基于长短期记忆神经网络模型的空气质量预测 被引量:15
10
作者 张冬雯 赵琪 +1 位作者 许云峰 刘滨 《河北科技大学学报》 CAS 2020年第1期67-75,共9页
随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以... 随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以预测非常重的污染;SANKAR等使用多元线性回归对空气质量进行预测,但其实验结果表明线性模型预测精度低、效率慢;P REZ等使用统计方法对空气质量进行预测,实验结果证明统计方法的预测精度比较低;WANG等采用改进的BP神经网络建立了空气质量指数的预测模型,其实验验证了BP神经网络收敛速度慢、容易陷入局部最优解的问题;YANG等利用相邻网格的空气质量浓度效应,建立了基于随机森林的PM 2.5浓度预测模型,通过实验过程证明网格划分程序削弱了后续空气质量分析的质量和效率。这些方法都难以从时间角度建模,其中预测精度低是比较重要的问题。因为预测精度低可能会导致空气质量预测结果出现较大的误差。针对空气质量研究中预测精度低的问题,提出了基于长短期记忆单元(long short-term memory,LSTM)的神经网络模型。该模型使用MAPE,RMSE,R,IA和MAE等指标来检测LSTM神经网络与对比模型的预测性能。由于Delhi和Houston是空气污染程度比较严重的城市,所以使用的实验数据集来自Delhi的Punjabi Bagh监测站2014—2016年的空气质量数据和Houston的Harris County监测站2010—2016年的空气质量数据。LSTM神经网络与多元线性回归和回归模型(SVR)的比较结果表明,LSTM神经网络适应多个变量或多输入的时间序列预测问题,LSTM神经网络具有预测精度高、速度快和较强的鲁棒性等优点。 展开更多
关键词 计算机神经网络 空气质量 长短期记忆单元 深度学习 多元线性回归 回归模型
在线阅读 下载PDF
基于深度学习长短期记忆神经网络的有色金属期货市场预测研究 被引量:9
11
作者 沈虹 李旭 潘琪 《南京理工大学学报》 CAS CSCD 北大核心 2021年第3期366-374,共9页
为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及... 为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及线性自回归移动平均(ARIMA)模型进行对比研究。数据源于Wind数据库和国际货币基金组织(IMF)数据库。使用Python深度学习软件模拟预测有色金属期货价格,结果显示:有色金属期货市场长期预测中,LSTM模型的预测表现略逊于ARIMA模型,MLP模型预测效果不理想;短期预测中,LSTM模型的预测结果和ARIMA模型相近,均优于MLP模型;LSTM模型与MLP模型相比,模型的稳定性和预测的精确度都更加出色。LSTM模型可作为ARIMA模型的最优替代之一。 展开更多
关键词 深度学习 长短期记忆模型 神经网络 多层感知器模型 回归移动平均模型 有色金属 期货市场 价格预测
在线阅读 下载PDF
基于时间卷积网络分位数回归的短期负荷概率密度预测方法 被引量:45
12
作者 庞昊 高金峰 杜耀恒 《电网技术》 EI CSCD 北大核心 2020年第4期1343-1349,共7页
为了获得电力系统短期负荷的概率性信息,将分位数回归理论与深度学习算法相结合,提出了一种基于时间卷积网络分位数回归的概率密度预测方法。首先利用距离相关系数衡量不同天气因素与短期负荷的相关性强弱,以此确定输入数据集合;其次通... 为了获得电力系统短期负荷的概率性信息,将分位数回归理论与深度学习算法相结合,提出了一种基于时间卷积网络分位数回归的概率密度预测方法。首先利用距离相关系数衡量不同天气因素与短期负荷的相关性强弱,以此确定输入数据集合;其次通过融合注意力机制的时间卷积网络分位数回归算法预测不同分位数条件下的负荷值;最后利用核密度估计得到待测负荷的概率密度分布。采用中国华东某地的历史负荷数据验证分析,结果表明该方法可以细致刻画待测负荷的概率密度分布,其众数和中位数对预测负荷实际值具有参考意义。 展开更多
关键词 短期负荷预测 概率密度 位数回归 距离相关系数 时间卷积网络 注意力机制
在线阅读 下载PDF
基于排列熵重构与长短期记忆神经网络的水电机组振摆趋势预测方法 被引量:4
13
作者 姜伟 周建中 +1 位作者 许颜贺 卢俊泽 《水电能源科学》 北大核心 2022年第12期152-155,共4页
针对常规水电机组振摆趋势预测问题,设计了一种基于排列熵重构(PER)与长短期记忆(LSTM)神经网络的混合预测模型。先针对复杂非线性振摆信号,利用变分模态分解(VMD)对其进行固有模态分量(IMFs)提取;其次,为降低IMFs复杂度,采用排列熵原... 针对常规水电机组振摆趋势预测问题,设计了一种基于排列熵重构(PER)与长短期记忆(LSTM)神经网络的混合预测模型。先针对复杂非线性振摆信号,利用变分模态分解(VMD)对其进行固有模态分量(IMFs)提取;其次,为降低IMFs复杂度,采用排列熵原理对所得IMFs进行重构,获取重构序列分量(RSCs);最后,将RSCs作为LSTM模型的输入,通过训练得到拟合度最优的LSTM,进而实现机组振摆趋势的预测。选用国内某水力发电厂^(#)3机组的摆度监测信号作为试验数据进行对比分析,结果表明相比于已有方法所提方法具有更优的预测性能,预测结果对于推动机组状态检修发展具有重要意义。 展开更多
关键词 水电机组 振摆趋势预测 排列熵 模态 长短期记忆神经网络
在线阅读 下载PDF
使用长短期记忆网络预测NBA比赛胜负 被引量:1
14
作者 李镇晖 张宇山 《计算机应用》 CSCD 北大核心 2021年第S02期98-102,共5页
深度学习与机器学习的方法已广泛应用于NBA(美国篮球职篮联赛)的比赛胜负的预测中,然而过去的方法未对过去几场比赛的数据进行建模,忽略了比赛双方近期状态的有效表示。为了解决这个问题,提出了基于长短期记忆(LSTM)网络的方法对NBA常... 深度学习与机器学习的方法已广泛应用于NBA(美国篮球职篮联赛)的比赛胜负的预测中,然而过去的方法未对过去几场比赛的数据进行建模,忽略了比赛双方近期状态的有效表示。为了解决这个问题,提出了基于长短期记忆(LSTM)网络的方法对NBA常规赛的比赛胜负进行预测。该方法分别以比赛中的两支球队过去几场比赛的数据作为LSTM的输入,以该场比赛结果作为输出,训练能够预测比赛胜负的模型。本质上是使用球队在该赛季的历史数据的平均值作为该球队的实力,以近几场比赛的数据序列作为该球队状态的体现。在实验中比较了其他几种预测NBA比赛胜负的方法(支持向量机、卷积神经网络、逻辑回归模型等方法),数据来自2014-2019年间的5个赛季的NBA常规赛数据。结果表明,模型的预测准确率达到(69.09%),高于其他几种模型。 展开更多
关键词 神经网络 长短期记忆网络 支持向量机 卷积神经网络 逻辑回归模型
在线阅读 下载PDF
基于随机森林和长短期记忆网络多元负荷预测的综合能源三层规划调度 被引量:11
15
作者 李玉凯 韩佳兵 +3 位作者 于春浩 王全 杨蒙 赵钧 《现代电力》 北大核心 2021年第6期695-703,共9页
针对综合能源系统负荷不确定性对规划和调度造成的高成本低效率问题,提出一种基于多元负荷预测的3层规划调度模型,主要包括预测层、规划层和调度层;基于随机森林回归网络和长短期记忆网络构建了多元负荷的长期和短期预测模型;以综合规... 针对综合能源系统负荷不确定性对规划和调度造成的高成本低效率问题,提出一种基于多元负荷预测的3层规划调度模型,主要包括预测层、规划层和调度层;基于随机森林回归网络和长短期记忆网络构建了多元负荷的长期和短期预测模型;以综合规划调度成本和调度运行成本最小为目标,采用改进粒子群算法和CPLEX求解器获取最优系统综合成本及配置方案;通过不同场景下的规划调度,分析了设备状态与系统成本。通过对比所构建的3层模型与常规双层模型的规划调度结果,证明了3层规划调度模型的经济性与可靠性。 展开更多
关键词 综合能源系统 多元负荷预测 规划调度 随机森林回归 长短期记忆神经网络
在线阅读 下载PDF
基于双向长短期记忆网络的DA40飞机碳刹车片剩余寿命预测 被引量:7
16
作者 徐萌 王亚锟 《计算机应用》 CSCD 北大核心 2021年第5期1527-1532,共6页
飞机刹车片在飞机制动过程中起着十分重要的作用。对刹车片进行准确的剩余使用寿命(RUL)预测对于减少制动故障以及节省人力物力资源具有重要意义。针对飞机刹车片磨损序列的非平稳和非线性等特点,提出了一种基于双向长短期记忆(Bi LSTM... 飞机刹车片在飞机制动过程中起着十分重要的作用。对刹车片进行准确的剩余使用寿命(RUL)预测对于减少制动故障以及节省人力物力资源具有重要意义。针对飞机刹车片磨损序列的非平稳和非线性等特点,提出了一种基于双向长短期记忆(Bi LSTM)网络的飞机刹车片RUL预测模型——VMD-Bi LSTM模型。首先,利用变分模态分解(VMD)方法将原始磨损序列分解成多个具有不同频率和带宽的子序列,从而降低序列的非平稳性;然后,对分解后的各子序列分别构造Bi LSTM神经网络预测模型;最后,将每个子序列的预测值叠加来得到刹车片磨损值的最终预测结果,从而实现刹车片的寿命预测。仿真结果表明,VMD-Bi LSTM模型的均方根误差(RMSE)为0.466,平均绝对百分比误差(MAPE)为0.898%,均优于对比模型,验证了VMD-Bi LSTM模型的优越性。 展开更多
关键词 双向长短期记忆网络 模态 碳刹车片 剩余使用寿命 神经网络
在线阅读 下载PDF
基于RBF神经网络分位数回归的电力负荷概率密度预测方法 被引量:101
17
作者 何耀耀 许启发 +1 位作者 杨善林 余本功 《中国电机工程学报》 EI CSCD 北大核心 2013年第1期93-98,共6页
针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负... 针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负荷完整概率分布的预测。中国某市实际数据的预测结果表明,提出的概率密度预测方法不仅能得出较为精确的点预测结果,而且能够获得短期负荷完整的概率密度函数预测结果。 展开更多
关键词 负荷预测 径向基函数 神经网络 位数回归 概率密度函数
在线阅读 下载PDF
基于神经网络分位数回归的VaR金融风险测度 被引量:11
18
作者 许启发 徐金菊 +1 位作者 蒋翠侠 刘晓华 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第12期1518-1522,共5页
基于神经网络分位数回归给出VaR风险测度方法,一方面,通过其分位数回归功能可以揭示响应变量整个条件分布特征;另一方面,通过其神经网络结构,可以模拟经济系统中的非线性结构,从而很好地解决了VaR风险测度中遇到的2个难题:尾部风险测度... 基于神经网络分位数回归给出VaR风险测度方法,一方面,通过其分位数回归功能可以揭示响应变量整个条件分布特征;另一方面,通过其神经网络结构,可以模拟经济系统中的非线性结构,从而很好地解决了VaR风险测度中遇到的2个难题:尾部风险测度与非线性关联模式。文章选取上证综指作为研究对象,将其与传统的VaR金融风险测度方法进行了实证比较,实证结果表明,基于神经网络分位数回归的VaR风险测度方法,在样本内与样本外都取得了较好的实证效果。 展开更多
关键词 金融风险 风险价值(VaR) 位数回归 神经网络位数回归
在线阅读 下载PDF
基于CNN-GRU分位数回归的短期母线负荷概率密度预测 被引量:20
19
作者 臧海祥 刘冲冲 +3 位作者 滕俊 孔伯骏 孙国强 卫志农 《智慧电力》 北大核心 2020年第8期24-30,69,共8页
随着分布式电源大规模并网,母线负荷的波动性和不确定性日益增加,给母线负荷预测带来新的挑战。传统的点预测方法难以对母线负荷的不确定性进行描述,为此提出一种基于卷积神经网络和门控循环神经网络分位数回归的概率密度预测方法。该... 随着分布式电源大规模并网,母线负荷的波动性和不确定性日益增加,给母线负荷预测带来新的挑战。传统的点预测方法难以对母线负荷的不确定性进行描述,为此提出一种基于卷积神经网络和门控循环神经网络分位数回归的概率密度预测方法。该方法通过卷积神经网络提取反映母线负荷动态变化的高阶特征,门控循环神经网络基于提取的高阶特征、天气、日类型等因素进行分位数回归建模,预测未来任意时刻不同分位数条件下的母线负荷值,最后利用核密度估计得到母线负荷概率密度曲线。以江苏省某市220 kV母线负荷数据进行测试,结果表明本文所提方法能够有效刻画未来母线负荷的概率分布,为配电网安全运行提供更多的决策信息。 展开更多
关键词 母线负荷预测 概率密度 卷积神经网络 门控循环神经网络 位数回归
在线阅读 下载PDF
基于约束并行LSTM分位数回归的短期电力负荷概率预测方法 被引量:49
20
作者 李丹 张远航 +1 位作者 杨保华 王奇 《电网技术》 EI CSCD 北大核心 2021年第4期1356-1363,共8页
负荷概率预测能准确量化负荷的不确定性,为电力系统运行决策提供全面的预测信息。针对负荷的时序性特点以及现有分位数回归方法存在的分位数预测值交叉问题,提出了一种基于约束并行长短期记忆神经网络分位数回归的短期电力负荷概率预测... 负荷概率预测能准确量化负荷的不确定性,为电力系统运行决策提供全面的预测信息。针对负荷的时序性特点以及现有分位数回归方法存在的分位数预测值交叉问题,提出了一种基于约束并行长短期记忆神经网络分位数回归的短期电力负荷概率预测方法。该方法结合长短期记忆神经网络与分位数回归,并行生成预测负荷的多个分位数结果,并加入考虑分位数预测值之间约束关系的组合层,以保证分位数预测值的合理性。实际算例结果表明,与常见负荷概率预测方法相比,所提方法不仅具有更高的预测效率,而且能获得更合理的分位数预测结果。 展开更多
关键词 负荷概率预测 长短期记忆神经网络 位数回归 位数交叉 深度学习技术
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部