期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
采用门控循环单元与深度进化策略的股票指数量化模型
1
作者 任晓萍 陈志平 《西安交通大学学报》 北大核心 2025年第2期146-155,共10页
为了提高股票价指数预测的准确性、增强统计建模性能优化与股票指数特征相依的交易策略效果,提出一种将指数预测与量化交易策略有效结合的门控循环单元深度进化量化模型(GRU-DES)。首先,建立循环神经网络(RNN)、长短时记忆神经网络(LSTM... 为了提高股票价指数预测的准确性、增强统计建模性能优化与股票指数特征相依的交易策略效果,提出一种将指数预测与量化交易策略有效结合的门控循环单元深度进化量化模型(GRU-DES)。首先,建立循环神经网络(RNN)、长短时记忆神经网络(LSTM)和门控循环单元网络(GRU)预测模型,分别对上海证券交易所(上证)超大盘股票指数、上证中盘股票指数和上证小盘股票指数进行预测;接着采用所提出的深度进化量化模型(DES)对三大股票指数的预测值与真实值进行回测研究,通过比较预测结果与真实结果在同一策略下的各项回测指标和交易细节等特性确定最优网络结构和策略参数,进而优化深度进化策略;最后根据优化后的策略提出了GRU-DES模型,并再次对三大股票指数进行样本外数据回测来验证模型有效性。实证回测结果表明:所提出的GRU-DES模型在各量化回测指标上较LSTM-DES模型与RNN-DES模型的预测精度均高出14%以上,有效解决了统计预测指标的随机性和过拟合的问题;根据2016年至2024年7年间数据回测,所提出的GRU-DES模型比强化学习模型在各回测指标中均展现了稳定性和有效性。 展开更多
关键词 股票指数 量化模型 长短记忆神经网络 循环单元 收益率
在线阅读 下载PDF
基于长短期记忆神经网络模型的空气质量预测 被引量:15
2
作者 张冬雯 赵琪 +1 位作者 许云峰 刘滨 《河北科技大学学报》 CAS 2020年第1期67-75,共9页
随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以... 随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以预测非常重的污染;SANKAR等使用多元线性回归对空气质量进行预测,但其实验结果表明线性模型预测精度低、效率慢;P REZ等使用统计方法对空气质量进行预测,实验结果证明统计方法的预测精度比较低;WANG等采用改进的BP神经网络建立了空气质量指数的预测模型,其实验验证了BP神经网络收敛速度慢、容易陷入局部最优解的问题;YANG等利用相邻网格的空气质量浓度效应,建立了基于随机森林的PM 2.5浓度预测模型,通过实验过程证明网格划分程序削弱了后续空气质量分析的质量和效率。这些方法都难以从时间角度建模,其中预测精度低是比较重要的问题。因为预测精度低可能会导致空气质量预测结果出现较大的误差。针对空气质量研究中预测精度低的问题,提出了基于长短期记忆单元(long short-term memory,LSTM)的神经网络模型。该模型使用MAPE,RMSE,R,IA和MAE等指标来检测LSTM神经网络与对比模型的预测性能。由于Delhi和Houston是空气污染程度比较严重的城市,所以使用的实验数据集来自Delhi的Punjabi Bagh监测站2014—2016年的空气质量数据和Houston的Harris County监测站2010—2016年的空气质量数据。LSTM神经网络与多元线性回归和回归模型(SVR)的比较结果表明,LSTM神经网络适应多个变量或多输入的时间序列预测问题,LSTM神经网络具有预测精度高、速度快和较强的鲁棒性等优点。 展开更多
关键词 计算机神经网络 空气质量 长短期记忆单元 深度学习 多元线性回归 回归模型
在线阅读 下载PDF
基于改进门控单元神经网络的语音识别声学模型研究 被引量:1
3
作者 俞建强 颜雁 +1 位作者 刘葳 孙一鸣 《长春理工大学学报(自然科学版)》 2020年第1期104-111,共8页
传统语音识别系统中,基于循环神经网络的语音声学模型对长距离历史信息记忆能力有限,难以利用语音的上下文相关性信息,标准长短时记忆单元参数规模庞大,神经网络训练收敛速度较慢。针对以上问题提出一种基于改进门控循环单元的双向循环... 传统语音识别系统中,基于循环神经网络的语音声学模型对长距离历史信息记忆能力有限,难以利用语音的上下文相关性信息,标准长短时记忆单元参数规模庞大,神经网络训练收敛速度较慢。针对以上问题提出一种基于改进门控循环单元的双向循环神经网络的语音识别声学模型。改进模型使用ReLU函数代替双曲正切激活函数,选取单位正交矩阵作为网络初始化参数,结合批量规范化方法,在维持网络长期依赖关系的同时加快训练收敛速度。在TIMIT和LibriSpeech数据集上的实验结果表明:与基线系统相比,改进的门控循环单元模型有2.8%的绝对音素错误率的下降;与标准长短时记忆单元模型相比,神经网络训练的平均迭代周期减少了16.6%,在识别性能和计算效率上均有提升。 展开更多
关键词 语音识别 声学模型 神经网络 长短记忆单元 循环单元
在线阅读 下载PDF
基于ICEEMDAN分解的多维时间序列干旱预测模型性能评估
4
作者 韦余鑫 李巧 +3 位作者 卢春雷 陶洪飞 马合木江·艾合买提 姜有为 《灌溉排水学报》 2025年第3期94-103,共10页
【目的】评估基于ICEEMDAN分解的多维时间序列干旱模型预测性能,为干旱预测提供新思路。【方法】以新疆三屯河灌区为研究区域,基于碾盘庄站1980—2023年逐月降水数据,计算1、3、6、9、12、24个月时间尺度的标准化降水指数(SPI),构建自... 【目的】评估基于ICEEMDAN分解的多维时间序列干旱模型预测性能,为干旱预测提供新思路。【方法】以新疆三屯河灌区为研究区域,基于碾盘庄站1980—2023年逐月降水数据,计算1、3、6、9、12、24个月时间尺度的标准化降水指数(SPI),构建自回归差分移动平均模型(ARIMA)、门控循环单元网络(GRU)、长短期记忆网络(LSTM)、改进的完全自适应噪声集合经验模态分解ICEEMDAN-ARIMA、ICEEMDAN-GRU和ICEEMDAN-LSTM组合模型,利用6种预测模型对多时间尺度SPI进行预测,借助均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)对所有模型预测精度进行评价。【结果】6种模型的预测精度均随时间尺度的增加而逐步提高,在24个月时间尺度下达到最高;ICEEMDAN能有效平稳时间数据,提升模型预测精度;6种模型的预测性能排序为:ICEEMDAN-ARIMA>ICEEMDAN-GRU>ICEEMDAN-LSTM>ARIMA>GRU>LSTM。【结论】基于ICEEMDAN算法的组合模型在干旱预测中表现出色,其中ICEEMDAN-ARIMA模型优于其他单一及组合模型,最有利于干旱预测。 展开更多
关键词 ICEEMDAN 长短期记忆网络 差分自回归移动平均模型 循环单元网络 标准化降水指数
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
5
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 循环神经网络
在线阅读 下载PDF
基于LSTM循环神经网络的故障时间序列预测 被引量:365
6
作者 王鑫 吴际 +3 位作者 刘超 杨海燕 杜艳丽 牛文生 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第4期772-784,共13页
有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和... 有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM预测模型参数优选算法,通过与多种典型时间序列预测模型的实验对比,验证了所提出的LSTM预测模型及其参数优选算法在故障时间序列分析中具有很强的适用性和更高的准确性。 展开更多
关键词 长短期记忆(LSTM)模型 循环神经网络 故障时间序列预测 多层网格搜索 深度学习
在线阅读 下载PDF
基于循环神经网络算法的水库调度模拟 被引量:7
7
作者 汤正阳 张迪 +3 位作者 林俊强 刘毅 彭期冬 尚毅梓 《水电能源科学》 北大核心 2021年第5期83-86,70,共5页
为探索深度学习算法在水库调度领域的应用,利用网络爬虫技术,收集了溪洛渡水电站的调度运行数据,基于RNN、LSTM、GRU3种循环神经网络,学习电站现有调度规则,构建了溪洛渡水库的出流量预测模型,并探究不同参数设定对模型精度和计算速度... 为探索深度学习算法在水库调度领域的应用,利用网络爬虫技术,收集了溪洛渡水电站的调度运行数据,基于RNN、LSTM、GRU3种循环神经网络,学习电站现有调度规则,构建了溪洛渡水库的出流量预测模型,并探究不同参数设定对模型精度和计算速度的影响,对比了3种模型的模拟性能,分析了影响水库调度的主要因素。研究结果表明,隐层数、训练批量、迭代次数、隐层节点数和批量值是影响模型精度和计算速度的主要参数;3种模型具备良好的学习能力,能够根据水库的历史调度数据,学习应对不同场景的调度规则,生成出流方案,可为调度决策方案的制定提供参考依据。 展开更多
关键词 水库调度 出流量预测 循环神经网络 长短期记忆网络 循环单元网络
在线阅读 下载PDF
基于人工神经网络的自然语言处理技术研究 被引量:2
8
作者 陈运财 《工程技术研究》 2024年第8期93-95,共3页
文章探讨了基于人工神经网络的自然语言处理技术,首先,阐述了人工神经网络的定义、结构、工作原理,以及与深度学习的关系。其次,详细研究了基于人工神经网络的自然语言处理技术,包括神经网络模型、词嵌入技术、循环神经网络、长短期记... 文章探讨了基于人工神经网络的自然语言处理技术,首先,阐述了人工神经网络的定义、结构、工作原理,以及与深度学习的关系。其次,详细研究了基于人工神经网络的自然语言处理技术,包括神经网络模型、词嵌入技术、循环神经网络、长短期记忆网络、转换器模型与自注意力机制等,并分析了这些技术面临的挑战。最后,通过实验设计与结果分析验证了所提出方法的有效性。文章研究内容对于推动自然语言处理技术的发展和应用具有重要意义。 展开更多
关键词 自然语言处理技术 人工神经网络 循环神经网络 长短期记忆网络 转换器模型 自注意力机制
在线阅读 下载PDF
LSTM-GRU模型对1型糖尿病和2型糖尿病患者低血糖的预警价值 被引量:1
9
作者 彭秀丽 王延年 李全忠 《河南医学研究》 CAS 2022年第12期2135-2139,共5页
目的探讨长短期记忆网络与门循环单元(LSTM-GRU)模型对1型糖尿病(T1DM)和2型糖尿病(T2DM)患者低血糖的预警价值。方法回顾性分析2015年7月至2017年3月于河南省人民医院内分泌科住院期间曾发生低血糖事件的50例糖尿病(DM)患者的临床资料... 目的探讨长短期记忆网络与门循环单元(LSTM-GRU)模型对1型糖尿病(T1DM)和2型糖尿病(T2DM)患者低血糖的预警价值。方法回顾性分析2015年7月至2017年3月于河南省人民医院内分泌科住院期间曾发生低血糖事件的50例糖尿病(DM)患者的临床资料,其中T1DM患者18例,T2DM患者32例。以连续72 h的血糖数据为研究对象,运用Python 3.6运行LSTM-GRU模型,得到15、30、45、60 min的预测血糖值,以均方根误差(RMSE)、平均绝对百分误差(MAPE)及克拉克(Clarke)误差网格分析评价模型预测性能。采用灵敏度、特异度和准确度评价模型低血糖预警效果,进一步比较模型在T1DM和T2DM患者的低血糖预警差异。结果15 min预测时,LSTM-GRU模型的RMSE、MAPE分别为0.24、2.64;30 min预测时,RMSE、MAPE分别为0.26、2.84;45 min预测时,RMSE、MAPE分别为0.27、2.89;60 min预测时,RMSE、MAPE分别为0.27、2.85。Clarke误差网格分析表明该模型对血糖的预测准确度均满足ISO 15197—2013标准。LSTM-GRU模型在15 min低血糖预警时,T1DM和T2DM患者的灵敏度、特异度、准确度分别为95.54%、98.41%、98.10%,88.82%、99.47%、99.05%;30 min预警时,T1DM和T2DM患者的灵敏度、特异度、准确度分别为94.49%、98.41%、97.98%,87.94%、99.44%、99.01%;45 min预警时,T1DM和T2DM患者的灵敏度、特异度、准确度分别为94.52%、98.49%、98.02%,85.53%、99.48%、98.98%;60 min预警时,T1DM和T2DM患者的灵敏度、特异度、准确度分别为92.78%、98.54%、97.92%,85.15%、99.46%、98.95%。无论在哪个预测时长下,LSTM-GRU模型对T1DM和T2DM患者的低血糖预警效果比较,差异有统计学意义(P<0.05)。结论LSTM-GRU模型能有效进行低血糖预警,且对T1DM患者的低血糖预警效果优于T2DM患者。 展开更多
关键词 1型糖尿病 2型糖尿病 长短期记忆网络与门循环单元模型 低血糖预警
在线阅读 下载PDF
基于LSTM-GRU的污水水质预测模型研究 被引量:6
10
作者 邹可可 李中原 +2 位作者 穆小玲 李铁生 于福荣 《能源与环保》 2021年第12期59-63,共5页
水质预测对水资源管理及水体保护至关重要,为提高污水水质预测模型准确率,考虑到水质参数是一个动态的时间序列,在研究RNN神经网络模型基础上,引入一种改进的长—短记忆网络结构(LSTM-GRU)来增加RNN的隐层,GRU和LSTM采用门结构代替标准... 水质预测对水资源管理及水体保护至关重要,为提高污水水质预测模型准确率,考虑到水质参数是一个动态的时间序列,在研究RNN神经网络模型基础上,引入一种改进的长—短记忆网络结构(LSTM-GRU)来增加RNN的隐层,GRU和LSTM采用门结构代替标准RNN结构中的隐藏单元,可以选择性地记忆重要信息而忘记不重要信息,从而高效学习历史水质参数信息,使得预测结果更加精确。通过仿真分析,本文采用的LSTM-GRU模型与传统的污水水质参数预测模型相比,LSTM-GRU模型的泛化能力更强,预测精度更高,有效性及实用性更强。 展开更多
关键词 水质预测 神经网络 长—短记忆模型 循环单元
在线阅读 下载PDF
光栅反散射问题的神经网络方法 被引量:1
11
作者 王丹 尹伟石 孟品超 《长春理工大学学报(自然科学版)》 2023年第3期137-142,共6页
针对测量的近场数据来研究光栅形状重构问题,提出了一种基于端对端结构的神经网络方法。该方法是一种循环神经网络,采用序列对序列的方式进行计算。网络模型以近场数据作为输入,以光栅形状参数作为输出,先利用编码端对输入的近场数据进... 针对测量的近场数据来研究光栅形状重构问题,提出了一种基于端对端结构的神经网络方法。该方法是一种循环神经网络,采用序列对序列的方式进行计算。网络模型以近场数据作为输入,以光栅形状参数作为输出,先利用编码端对输入的近场数据进行特征提取,再通过Adam算法更新模型权重,最后使用解码端进行光栅形状参数的反演。此外,模型利用多个门控循环单元从近场数据中提取近场特征,并将该特征引入到解码端中,为反演光栅形状参数提供了更多的特征参考,进一步提高反演效果。数值实验说明该方法可以有效地重构光栅的形状。 展开更多
关键词 光栅反散射问题 神经网络 循环单元 长短期记忆神经网络
在线阅读 下载PDF
基于深度学习神经网络超参数优化的入库径流预测方法研究——以云南省暮底河水库为例 被引量:9
12
作者 陈金红 崔东文 《三峡大学学报(自然科学版)》 CAS 2023年第4期25-32,共8页
准确的入库日径流预测在水库优化调度中发挥着重要作用.为提高日径流预测精度,提出了基于小波包变换(WPT)并结合了白鲨优化(WSO)算法的门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)、卷积神经网络(CNN)日径流时间序列预测模型,以... 准确的入库日径流预测在水库优化调度中发挥着重要作用.为提高日径流预测精度,提出了基于小波包变换(WPT)并结合了白鲨优化(WSO)算法的门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)、卷积神经网络(CNN)日径流时间序列预测模型,以云南省暮底河水库2018—2020年入库日径流时间序列预测为例对各模型进行检验.首先利用WPT将日径流时序数据分解为若干子序列分量;其次引入WSO对GRU、LSTM、CNN超参数进行调优,建立WPT-WSO-GRU、WPT-WSO-LSTM、WPT-WSO-CNN模型;最后利用所建立的模型对各子序列分量进行预测及加和重构,并构建WPT-GRU、WPT-LSTM、WPT-CNN及基于BP神经网络的WPT-WSO-BP、WPT-BP作对比分析模型.结果表明:WPT-WSO-GRU、WPT-WSO-LSTM、WPT-WSO-CNN模型对实例日径流预测的平均绝对百分比误差EMAP分别为3.67%、5.52%、8.98%,平均绝对误差EMA分别为0.120、0.155、0.329 m^(3)/s,确定性系数DC分别为0.996 2、0.995 7、0.974 0 s,预报合格率RQ分别为98.1%、96.4%、89.6%,预测效果优于对应未经WSO调优的WPT-GRU、WPT-LSTM、WPT-CNN模型及WPT-WSO-BP、WPT-BP模型,其中WPT-WSO-GRU模型具有更高的预测精度和更好的泛化能力,WPT-WSO-LSTM模型次之.WSO能有效调优GRU、LSTM、CNN超参数,提高GRU、LSTM、CNN预测性能.WPT-WSO-GRU、WPT-WSO-LSTM模型在入库日径流时间序列预测研究中具有较好的应用前景. 展开更多
关键词 日径流预测 循环控制单元 长短期记忆神经网络 卷积神经网络 白鲨优化算法 小波包变换
在线阅读 下载PDF
基于深度学习的基坑开挖引起地表位移时序预测 被引量:1
13
作者 唐浩然 胡垚 +3 位作者 雷华阳 路军富 刘婷 王凯 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第S02期236-241,共6页
为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工... 为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工程,采用滚动预测方法建立基坑开挖引起邻近地铁车站地表沉降数据集。通过平均绝对误差MAE、平均相对误差MAPE和均方根误差RMSE3种评价指标对预测结果进行评价。结果表明:CNN-GRU模型预测效果最优,CNN-LSTM模型次之,其次是GRU模型,最后是LSTM模型。CNN-LSTM混合网络模型相较于LSTM模型对3种评价指标分别降低了24.4%,53.8%,4.1%,CNN-GRU混合网络模型相较于GRU模型分别降低了13.9%,49.1%,1%。 展开更多
关键词 基坑开挖 深度学习 卷积神经网络 长短期记忆网络 循环单元
在线阅读 下载PDF
基于GWO-GRU的光伏发电功率预测
14
作者 陈庆明 廖鸿飞 +1 位作者 孙颖楷 曾亚森 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期438-444,共7页
针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结... 针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结果表明,长时功率预测时,GWO-GRU模型的均方根误差更低、拟合系数更高、耗时更少,比传统LSTM模型的平均绝对误差降低10.20%;短时功率预测时,GWO-GRU模型在3种典型天气条件下不仅预测的平均误差最低、稳定性最强,而且比GWO-LSTM模型的平均用时节省17.24%。不同时长的功率预测表明,GWO-GRU相对于LSTM光伏功率预测效果更佳。 展开更多
关键词 光伏发电 功率预测 循环单元 灰狼算法 长短期记忆网络 时间序列
在线阅读 下载PDF
基于LSTM的海上LNG转驳系统泄漏事故预测方法研究 被引量:2
15
作者 邓陈辉 张纪涵 《力学与实践》 2024年第3期500-510,共11页
在海上液化天然气(liquefied natural gas,LNG)转驳系统中,一旦发生泄漏事故,其后果将极其严重,可能引发火灾、爆炸、中毒等危害。液化天然气泄漏事故发生速度迅猛,因此如何快速进行泄漏扩散的预测对于应对突发事件下的人员疏散和设备... 在海上液化天然气(liquefied natural gas,LNG)转驳系统中,一旦发生泄漏事故,其后果将极其严重,可能引发火灾、爆炸、中毒等危害。液化天然气泄漏事故发生速度迅猛,因此如何快速进行泄漏扩散的预测对于应对突发事件下的人员疏散和设备保护至关重要。本研究构建了一种基于长短期记忆神经网络(long short-term memory,LSTM)的海上液化天然气转驳系统泄漏扩散预测模型,利用流体动力学仿真计算,获取了大量的基础数据集,然后通过训练,能够有效地对气体扩散浓度进行准确预测,所得结果的均方差和平均绝对误差均低于门控循环单元(gated recurrent unit,GRU)神经网络模型和反向传播神经网络模型。 展开更多
关键词 海上液化天然气转驳系统 泄漏事故 长短期记忆神经网络 循环单元 反向传播
在线阅读 下载PDF
基于Informer算法的病毒传播预测研究 被引量:1
16
作者 常万杰 刘琳琳 +2 位作者 曹宇 曹杨 魏海平 《辽宁石油化工大学学报》 CAS 2024年第1期80-88,共9页
新冠肺炎病毒等疫情受多种复杂现实因素的影响,因此疫情的发展存在不确定性。为了解决基于传染病仓室模型受自身诸多理想假设条件的限制而导致疫情预测结果误差较大的问题,采用基于深度学习的时序预测模型对疫情发展进行预测,建立了一... 新冠肺炎病毒等疫情受多种复杂现实因素的影响,因此疫情的发展存在不确定性。为了解决基于传染病仓室模型受自身诸多理想假设条件的限制而导致疫情预测结果误差较大的问题,采用基于深度学习的时序预测模型对疫情发展进行预测,建立了一种基于Transformer模型的Informer模型,并将注意力机制和蒸馏机制应用到疫情数据的时序预测中。以门限自回归(Threshold AutoRegressive, TAR)模型和多种主流的循环神经类时序预测模型作为对比模型,通过仿真实验,对中国、美国和英国的疫情数据当前尚存感染人数进行短期预测,并以均方根误差(RMSE)和平均绝对误差(MAE)为评价指标,选择最佳模型进行了中长期的预测。结果表明,无论是RMSE还是MAE,Informer模型的指标值都是最优的,表明Informer模型对中国、美国和英国疫情的预测精度比其他对比模型高。最后,使用Informer模型对中国、美国和英国的疫情发展进行了中长期预测。 展开更多
关键词 新冠肺炎病毒疫情 限自回归 长短期记忆网络 卷积记忆网络 循环单元网络 时序卷积网络 Informer算法
在线阅读 下载PDF
基于电商评论的文本情感分类效果研究
17
作者 计文丽 《科学技术创新》 2024年第3期100-105,共6页
挖掘分析评论文本的情感倾向成为近年来自然语言处理领域的研究热点之一。本文以挖掘京东商城商品评论数据价值为研究视角,以深度学习中的循环神经网络为理论基础,将循环神经网络的各变体模型应用到文本情感分类任务中,对比不同改进模... 挖掘分析评论文本的情感倾向成为近年来自然语言处理领域的研究热点之一。本文以挖掘京东商城商品评论数据价值为研究视角,以深度学习中的循环神经网络为理论基础,将循环神经网络的各变体模型应用到文本情感分类任务中,对比不同改进模型的评论文本分类效果。本文首先研究了循环神经网络的变体模型长短期记忆模型LSTM、门控循环单元模型GRU在京东商品评论文本上的分类效果。实验表明,GRU模型在训练过程中的准确率更高且更早达到优化值,总体上GRU网络模型在文本分类上的效果优于LSTM网络模型。其次研究了以情感词驱动的、基于循环神经网络各变体模型的注意力神经网络模型,将各深度神经网络模型与注意力机制相结合,对比分析各组合模型的情感分类效果。实验表明,引入注意力机制的神经网络模型,较传统网络模型分类准确率都有所提升,且会更快地达到优化值。 展开更多
关键词 情感分类 循环神经网络 长短期记忆 循环单元 注意力机制
在线阅读 下载PDF
基于Transformer的机动目标跟踪技术 被引量:2
18
作者 党晓方 蔡兴雨 《电子科技》 2023年第9期86-92,共7页
为解决递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)在跟踪机动目标时,由于序列过长容易出现梯度消失和梯度爆炸导致目标发生机动后跟踪效果变差的问题,文中构建了一种基于Transformer的... 为解决递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)在跟踪机动目标时,由于序列过长容易出现梯度消失和梯度爆炸导致目标发生机动后跟踪效果变差的问题,文中构建了一种基于Transformer的网络(Transformer-Based Network,TBN)来跟踪机动目标。该网络使用基于注意力机制设计的编码器提取目标序列的历史航迹特征,提高对目标机动情况的捕获能力。使用基于卷积网络设计的解码器输出最终的航迹序列,提高机动目标跟踪能力。通过中心最大值(Center-Max,CM)归一化方法,将所有序列减去其初值,降低了网络学习的复杂度,增强了网络的泛化性。实验结果证明,在存在机动情况的大规模航迹数据集下,与长短期记忆网络相比,CM归一化和TBN相组合的方法的位置精度提高了11.2%,速度精度提高了41.9%。文中所提方法在观测值存在缺失时仍能正确跟踪目标。 展开更多
关键词 机动目标跟踪 注意力机制 Transformer网络 循环神经网络 长短期记忆网络 归一化 状态空间模型 神经网络
在线阅读 下载PDF
基于深度学习的城市轨道交通短时客流起讫点预测 被引量:16
19
作者 侯晓云 邵丽萍 +2 位作者 李静 黄磊 李雪岩 《城市轨道交通研究》 北大核心 2020年第1期55-58,115,共5页
提出了一种基于门控循环单元(GRU)神经网络的城市轨道交通短时客流OD(起讫点)预估模型。以实际数据为例,引入同期天气数据,对工作日的数据进行训练预测,并与长短期记忆(LSTM)神经网络模型进行对比。预测结果表明:相对于LSTM模型,GRU模... 提出了一种基于门控循环单元(GRU)神经网络的城市轨道交通短时客流OD(起讫点)预估模型。以实际数据为例,引入同期天气数据,对工作日的数据进行训练预测,并与长短期记忆(LSTM)神经网络模型进行对比。预测结果表明:相对于LSTM模型,GRU模型不仅模型简单、收敛速度明显较快,而且在预估误差和预测稳定性等方面也略优,更适于短时客流OD的快速预测。 展开更多
关键词 城市轨道交通 短时客流起讫点预测 循环单元神经网络 长短期记忆神经网络
在线阅读 下载PDF
基于双向LSTM的民航客运量预测 被引量:3
20
作者 甘国育 游进国 张婷 《现代电子技术》 2022年第14期175-180,共6页
传统的基于时间序列的民航客运量预测方法难以解决序列中非线性、非平稳性关系以及多维度问题,预测准确性较低。针对此问题,文中提出一种基于双向长短期记忆网络的客运量预测模型(PVPM_BiLSTM)。该模型利用两层双向长短期记忆网络捕获... 传统的基于时间序列的民航客运量预测方法难以解决序列中非线性、非平稳性关系以及多维度问题,预测准确性较低。针对此问题,文中提出一种基于双向长短期记忆网络的客运量预测模型(PVPM_BiLSTM)。该模型利用两层双向长短期记忆网络捕获客运量序列正序和逆序的时间依赖,从而有效地解决客运量序列存在的非线性、非平稳性关系。首先,对民航公司提供的民航数据进行处理,包括删除重复值、填补缺失值和构建“日”粒度的客运量时间序列数据等;然后,基于训练样本对模型进行训练;最后,基于测试集,对已训练的模型进行实验分析。结果表明,PVPM_BiLSTM在RMSE和MAE评价指标上优于门控循环单元、一维卷积神经网络和时间卷积网络等基准模型,模型预测的准确性较高,具有可行性。 展开更多
关键词 客运量预测 时间序列 非线性 双向长短期记忆网络 循环单元 一维卷积神经网络 时间卷积网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部