期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于INGO-CSA-LSTMN的变转速齿轮故障智能识别方法
1
作者 陈向民 李博 +3 位作者 张亢 姚鹏 李泳辉 雷瀚霖 《动力工程学报》 北大核心 2025年第6期913-923,共11页
为提高齿轮在变转速工况下的故障识别效率和准确率,提出了一种基于改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法优化卷积自注意力长短期记忆网络(convolutional self-attention long short-term memory network,... 为提高齿轮在变转速工况下的故障识别效率和准确率,提出了一种基于改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法优化卷积自注意力长短期记忆网络(convolutional self-attention long short-term memory network,CSA-LSTMN)的变转速齿轮故障智能识别方法,即INGO-CSA-LSTMN。针对传统北方苍鹰优化算法训练时间过长和容易陷入局部最优的问题,引入正弦脉冲调制混沌映射和随机莱维飞行策略,提出一种INGO算法,并将其应用于所构建的CSA-LSTMN模型的关键参数寻优,以提高该模型的稳定性及训练效率。通过测试函数的检验表明:INGO算法具有更快的收敛速度,可更准确地找到最优解。通过2种不同试验台齿轮数据集的分析表明:相较于其他常用网络模型,INGO-CSA-LSTMN模型对于不同工况下的齿轮故障具有更高的识别精度,准确率均在99.9%以上。 展开更多
关键词 变转速工况 齿轮 北方苍鹰优化算法 卷积自注意力长短期记忆网 智能诊断
在线阅读 下载PDF
基于LSTM网络的在线藻类时序数据预测研究:以三峡水库为例 被引量:11
2
作者 欧阳添 闪锟 +3 位作者 周博天 黄昱 吴忠兴 尚明生 《湖泊科学》 EI CAS CSCD 北大核心 2021年第4期1031-1042,共12页
三峡水库在不同水位调控期支流回水区末端水深变化幅度较大,加之复杂水动力变化产生的生境异质性,塑造出有别于浅水湖泊的水华暴发特征.本研究基于库区4条支流——香溪河、澎溪河、大宁河及草堂河部署的自动监测数据,利用小波变换(WT)... 三峡水库在不同水位调控期支流回水区末端水深变化幅度较大,加之复杂水动力变化产生的生境异质性,塑造出有别于浅水湖泊的水华暴发特征.本研究基于库区4条支流——香溪河、澎溪河、大宁河及草堂河部署的自动监测数据,利用小波变换(WT)和长短期记忆网络(LSTM)构建藻类时序变化预测模型,并探讨神经网络层数、每层隐藏神经元数、时间步长数等关键参数的最优组合.结果表明:WT-LSTM模型可有效预测在线获取的叶绿素a浓度变化,模型在4条支流的均方根误差(RMSE)为0.049-0.221μg/L,平均相对误差(MRE)为0.43%-1.12%;预测结果揭示深度神经网络方法可有效地提取在线藻类时序数据特征,而相较于深度置信网络(DBN),LSTM在4条支流叶绿素a预测的平均RMSE和MRE分别降低了9.20%和3.06%;在线监测数据的小波降噪并未影响叶绿素a的变化趋势,且WT-LSTM模型对叶绿素a预测效果显著提升于WT-DBN,平均RMSE和MRE分别降低了51.72%和59.24%;通过设置不同时间步长的预测实验,证实24 h内模型精度会随着预测步长的增加而降低,但模型平均相对误差可保持在13%以内,且对区间内叶绿素a极大值的预测精度要优于其平均值.本研究为水华预测上耦合在线监测与深度学习提供了研究范例,通过4个站点数据的交叉验证实验,亦证实具有统计学关联性的不同空间数据合并后可延展时序模型的学习样本,增强模型在实际应用中的稳健性. 展开更多
关键词 在线监测 小波变换 长短期记忆网 浮游植物 三峡水库
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
3
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
4
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
5
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部