为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编...为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编码模型提取输入数据的核心特征,再使用LSTM模型长时记忆历史数据,二者结合对城市交通拥堵程度进行有效预测,通过与已有的交通拥堵预测模型进行对比,结果表明,该方法具有较高的预测准确度和鲁棒性,准确度能达到92%以上。展开更多
锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电...锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。展开更多
文摘为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编码模型提取输入数据的核心特征,再使用LSTM模型长时记忆历史数据,二者结合对城市交通拥堵程度进行有效预测,通过与已有的交通拥堵预测模型进行对比,结果表明,该方法具有较高的预测准确度和鲁棒性,准确度能达到92%以上。
文摘锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。